论文标题

带有多面窗口的剪切和项目集II:线性重复性

Cut and project sets with polytopal window II: linear repetitivity

论文作者

Koivusalo, Henna, Walton, James J.

论文摘要

本文提供了一类天然的Aperiodic Euclidean剪切和带有凸多面体窗口的项目方案的线性重复(LR)的完整分类。我们的结果涵盖了晶格密集地投入内部空间的剪切和项目方案,并且(可能是在翻译后)击中了每个支撑窗口的支持平面。我们的主要结果是,只有当模式的复杂性低时(属性C),并且投影晶格满足二聚体条件(属性D)时,LR才能满足。属性C可以通过计算支持超平面的稳定剂亚组的线性跨度和尺寸,如本文第一部分所述。为了定义正确的双苯胺条件D,我们为将多面体切割和项目方案分解为因素,建立了新的结果,开发了在Forrest,Hunton和Kellendonk的工作中启动的概念。这意味着,当满足C时,窗口将窗口分成诱导晶格兼容分裂的组件。那么属性d是要求,对于任何合适的分解,这些因素都不会相对于内部空间中的内部空间中的原点,而不是总空间中的规范。在每个因素上,这对应于线性形式系统的二芬太汀近似的常见概念,这是非常近似的。这将以前的关于立方切割和项目方案的工作扩展到了非常一般的削减和项目方案类别。我们在几个示例上演示了我们的主要定理,并得出了我们的主要定理的一些进一步后果,例如等效性LR,权重的阳性以及满足此类的多面切割和项目集的亚addive Ergodic定理。

This paper gives a complete classification of linear repetitivity (LR) for a natural class of aperiodic Euclidean cut and project schemes with convex polytopal windows. Our results cover those cut and project schemes for which the lattice projects densely into the internal space and (possibly after translation) hits each supporting hyperplane of the polytopal window. Our main result is that LR is satisfied if and only if the patterns are of low complexity (property C), and the projected lattice satisfies a Diophantine condition (property D). Property C can be checked by computation of the ranks and dimensions of linear spans of the stabiliser subgroups of the supporting hyperplanes, as investigated in Part I to this article. To define the correct Diophantine condition D, we establish new results on decomposing polytopal cut and project schemes to factors, developing concepts initiated in the work of Forrest, Hunton and Kellendonk. This means that, when C is satisfied, the window splits into components which induce a compatible splitting of the lattice. Then property D is the requirement that, for any suitable decomposition, these factors do not project close to the origin in the internal space, relative to the norm in the total space. On each factor, this corresponds to the usual notion from Diophantine Approximation of a system of linear forms being badly approximable. This extends previous work on cubical cut and project schemes to a very general class of cut and project schemes. We demonstrate our main theorem on several examples, and derive some further consequences of our main theorem, such as the equivalence LR, positivity of weights and satisfying a subadditive ergodic theorem for this class of polytopal cut and project sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源