论文标题
朝向自旋波和顺磁性自旋浴之间的量子接口
Towards a quantum interface between spin waves and paramagnetic spin baths
论文作者
论文摘要
旋转波已经成为下一代信息技术的有前途的候选信息载体。最近使用电子自旋在钻石铺平的实验证明了它们的检测,以研究自旋波上可控顺便磁性旋转浴的反作用。在这里,我们提出了一个量子理论,描述了自旋波和顺磁性自旋之间的相互作用。作为一个案例研究,我们考虑了在Yttrium-Iron-Garnet薄膜附近钻石中氮气旋转的合奏。我们展示了整体的背部用作如何导致自旋波谱和传播特性的强烈可调修改。这些修改包括完全抑制自旋波的传播,以及在不同的参数方面,它们的传播长度提高了$ \ sim 50 \%$。此外,我们展示了自旋波热波动如何诱导浴缸中顺磁性旋转的可测量频移。这种转移会导致热分散力,可以通过钻石机械谐振器进行光学测量和/或机械测量。此外,我们使用我们的理论计算浴缸中旋转之间的自旋波介导的相互作用。我们表明,所有上述效果都是通过最新实验来测量的。我们的结果为描述自旋波和自旋浴的混合量子系统提供了理论基础,并确定了量子旋转作为主动控制,传感和旋转工具的潜力。
Spin waves have risen as promising candidate information carriers for the next generation of information technologies. Recent experimental demonstrations of their detection using electron spins in diamond pave the way towards studying the back-action of a controllable paramagnetic spin bath on the spin waves. Here, we present a quantum theory describing the interaction between spin waves and paramagnetic spins. As a case study we consider an ensemble of nitrogen-vacancy spins in diamond in the vicinity of an Yttrium-Iron-Garnet thin film. We show how the back-action of the ensemble results in strong and tuneable modifications of the spin-wave spectrum and propagation properties. These modifications include the full suppression of spin-wave propagation and, in a different parameter regime, the enhancement of their propagation length by $\sim 50\%$. Furthermore, we show how the spin wave thermal fluctuations induce a measurable frequency shift of the paramagnetic spins in the bath. This shift results in a thermal dispersion force that can be measured optically and/or mechanically with a diamond mechanical resonator. In addition, we use our theory to compute the spin wave-mediated interaction between the spins in the bath. We show that all the above effects are measurable by state-of-the-art experiments. Our results provide the theoretical foundation for describing hybrid quantum systems of spin waves and spin baths, and establish the potential of quantum spins as active control, sensing, and interfacing tools for spintronics.