论文标题
Markovian半群从混合不可变动的动力图
Markovian semigroup from mixing non-invertible dynamical maps
论文作者
论文摘要
我们分析了不可糊化的通用Pauli动力图的凸组合。通过操纵混合参数,可以产生一个带有奇异性,额外奇异性甚至没有奇异性的通道。特别是,我们展示了如何使用不可变动的动态图来产生马尔可夫半群。有趣的是,混合导致半群的地图是由不定期的时间局部发电机和时间均匀的记忆内核生成的。即,它们的公式包含无限态度。最后,我们展示了在混合相应的动态图后发电机和内存内核如何变化。
We analyze the convex combinations of non-invertible generalized Pauli dynamical maps. By manipulating the mixing parameters, one can produce a channel with shifted singularities, additional singularities, or even no singularities whatsoever. In particular, we show how to use non-invertible dynamical maps to produce the Markovian semigroup. Interestingly, the maps whose mixing results in a semigroup are generated by the time-local generators and time-homogeneous memory kernels that are not regular; i.e., their formulas contain infinities. Finally, we show how the generators and memory kernels change after mixing the corresponding dynamical maps.