论文标题

解开长尾视觉识别的标签分布

Disentangling Label Distribution for Long-tailed Visual Recognition

论文作者

Hong, Youngkyu, Han, Seungju, Choi, Kwanghee, Seo, Seokjun, Kim, Beomsu, Chang, Buru

论文摘要

长尾视觉识别的当前评估方案在长尾源标签分布上训练分类模型,并评估其在统一目标标签分布上的性能。这种协议具有可疑的实用性,因为目标也可以长期进行。因此,我们将长尾视觉识别提出为标签移位问题,目标和源标签分布不同。处理标签转移问题的重大障碍之一是源标签分布与模型预测之间的纠缠。在本文中,我们着重于将源标签分布与模型预测解散。我们首先引入了一种简单但被忽略的基线方法,该方法通过后处理通过交叉渗透损失和软磁性函数训练的模型预测来匹配目标标签分布。尽管此方法超过了基准数据集上的最新方法,但可以通过直接将源标签分布与训练阶段的模型预测直接脱离源标签的分布来进一步改进。因此,我们提出了一种基于Donsker-Varadhan表示的最佳结合的新方法,标签分布分布(LADE)损失。 Lade在基准数据集上实现了最先进的性能,例如CIFAR-100-LT,PLOCE-LT,Imagenet-LT和Inaturalist 2018。

The current evaluation protocol of long-tailed visual recognition trains the classification model on the long-tailed source label distribution and evaluates its performance on the uniform target label distribution. Such protocol has questionable practicality since the target may also be long-tailed. Therefore, we formulate long-tailed visual recognition as a label shift problem where the target and source label distributions are different. One of the significant hurdles in dealing with the label shift problem is the entanglement between the source label distribution and the model prediction. In this paper, we focus on disentangling the source label distribution from the model prediction. We first introduce a simple but overlooked baseline method that matches the target label distribution by post-processing the model prediction trained by the cross-entropy loss and the Softmax function. Although this method surpasses state-of-the-art methods on benchmark datasets, it can be further improved by directly disentangling the source label distribution from the model prediction in the training phase. Thus, we propose a novel method, LAbel distribution DisEntangling (LADE) loss based on the optimal bound of Donsker-Varadhan representation. LADE achieves state-of-the-art performance on benchmark datasets such as CIFAR-100-LT, Places-LT, ImageNet-LT, and iNaturalist 2018. Moreover, LADE outperforms existing methods on various shifted target label distributions, showing the general adaptability of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源