论文标题
$γ$ - 相结合物作为合金$β$ - (al $ _x $ ga $ _ {1 \ text { - } x} $)的常见缺陷
$γ$-phase Inclusions as Common Defects in Alloyed $β$-(Al$_x$Ga$_{1\text{-}x}$)$_2$O$_3$ and Doped $β$-Ga$_2$O$_3$ Films
论文作者
论文摘要
$β$ -GA $ _2 $ o $ _3 $是一种有希望的超宽带隙半导体,可以通过与Al合金合金进一步增强其性能。在这里,使用原子分辨率扫描传输电子显微镜(STEM),我们发现热力学上不稳定的$γ$ - 相是两个$β$ - (Al $ _x $ _x $ ga $ _ {1 {1 \ text Text { - } X} $ _2 $ _3 $ $ _3 $ $ $ $ $ y-c $ o y-c $ o y-通过分子束外延生长的膜。对于未祖的$β$ - (al $ _x $ ga $ _ {1 \ text { - } x} $)$ _ 2 $ _ 2 $ o $ $ _3 $胶片我们观察到$γ$ - 相位的夹杂物,在$β$ - 相位的$β$ - 在较低的生长温度下(〜400-600 $^$^\ circ)。在掺杂的$β$ -GA $ _2 $ o $ _3 $中,在具有广泛的N型掺杂剂和掺杂剂浓度的薄膜表面上观察到$γ$ - 相的薄层。 $γ$相层的厚度与生长温度最密切相关,峰值约为600 $^{\ circ} $ c。在$β$ - 相中观察到GA间隙,尤其是在与$γ$ - 相的接口附近。通过对Sn掺杂$β$ - (Al $ _x $ ga $ _ {1 \ text { - } x} $)的表面的同一区域进行成像,在situ升温后,最多400 $^{\ circ} $ c,a $γ$ -phase a的属于a $γ$ c的介绍,在situ升温后,a $γ$ - $β$ - 相。这表明,GA间隙向表面的扩散可能是表面$γ$ - 阶段生长的机制,更普遍地说,更开放的$γ$ - 期可能会提供扩散的途径,使其成为一个具有运动型和早期形成阶段GA $ _2 $ o _3 $ _3 $的生长。
$β$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $γ$-phase is a ubiquitous defect in both $β$-(Al$_x$Ga$_{1\text{-}x}$)$_2$O$_3$ films and doped $β$-Ga$_2$O$_3$ films grown by molecular beam epitaxy. For undoped $β$-(Al$_x$Ga$_{1\text{-}x}$)$_2$O$_3$ films we observe $γ$-phase inclusions between nucleating islands of the $β$-phase at lower growth temperatures (~400-600 $^{\circ}$C). In doped $β$-Ga$_2$O$_3$, a thin layer of the $γ$-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the $γ$-phase layer was most strongly correlated with the growth temperature, peaking at about 600 $^{\circ}$C. Ga interstitials are observed in $β$-phase, especially near the interface with the $γ$-phase. By imaging the same region of the surface of a Sn-doped $β$-(Al$_x$Ga$_{1\text{-}x}$)$_2$O$_3$ after ex-situ heating up to 400 $^{\circ}$C, a $γ$-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the $β$-phase. This suggests that the diffusion of Ga interstitials towards the surface is likely the mechanism for growth of the surface $γ$-phase, and more generally that the more-open $γ$-phase may offer diffusion pathways to be a kinetically-favored and early-forming phase in the growth of Ga$_2$O$_3$.