论文标题

自然进化策略的变分量子计算

Natural Evolutionary Strategies for Variational Quantum Computation

论文作者

Anand, Abhinav, Degroote, Matthias, Aspuru-Guzik, Alán

论文摘要

自然进化策略(NES)是无梯度黑盒优化算法的家族。这项研究说明了它们用于优化消失梯度区域中随机定义的参数化量子电路(PQC)。我们表明,使用NES梯度估计量可以减轻方差的指数下降。我们实施了两种特定的方法,即指数和可分离的自然进化策略,以优化PQC,并将其与标准梯度下降进行比较。我们将它们应用于基态能量估计的两个不同问题,该问题使用变异量子量化(VQE)和状态制备,并具有不同深度和长度的电路。我们还为具有更大深度的电路介绍了批处理优化,以将进化策略的使用扩展到大量参数。在上述所有情况下,我们实现了与最新的优化技术相当的准确性,并且电路评估数量较低。我们的经验结果表明,可以将NES用作与其他基于梯度的方法一起优化具有消失梯度的区域中的深量子电路的混合工具。

Natural evolutionary strategies (NES) are a family of gradient-free black-box optimization algorithms. This study illustrates their use for the optimization of randomly-initialized parametrized quantum circuits (PQCs) in the region of vanishing gradients. We show that using the NES gradient estimator the exponential decrease in variance can be alleviated. We implement two specific approaches, the exponential and separable natural evolutionary strategies, for parameter optimization of PQCs and compare them against standard gradient descent. We apply them to two different problems of ground state energy estimation using variational quantum eigensolver (VQE) and state preparation with circuits of varying depth and length. We also introduce batch optimization for circuits with larger depth to extend the use of evolutionary strategies to a larger number of parameters. We achieve accuracy comparable to state-of-the-art optimization techniques in all the above cases with a lower number of circuit evaluations. Our empirical results indicate that one can use NES as a hybrid tool in tandem with other gradient-based methods for optimization of deep quantum circuits in regions with vanishing gradients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源