论文标题
风能互动作为发光蓝色变量的慢循环亮度变化的起源
Wind-envelope interaction as the origin of the slow cyclic brightness variations of luminous blue variables
论文作者
论文摘要
发光的蓝色变量(LBV)是热,非常发光的巨星,在数十年的时间尺度上显示出亮度,半径和光球温度的大型准周期变化。这种变异性的物理起源,称为S doradus循环,其原型后仍然难以捉摸。在这里,我们研究了爱丁顿限制附近恒星中恒星结构的恒星风质量损失的反馈。我们执行时间依赖性的流体动力学恒星进化计算,应用了恒星风质量下方的处方,其温度依赖性受到预测的系统质量损失率以下25 kk的预测增加。我们发现,当风质量损失速率越过明确的阈值时,风底条件的不连续变化会导致恒星包膜的重组。诱导的急剧半径和温度变化发生在膨胀的信封的热时间尺度上,反过来施加了质量损失的变化,可以逆转初始变化,从而导致缺乏固定平衡构型的循环。我们的概念验证模型广泛地再现了s doradus变异性的典型观察现象学。我们确定了触发不稳定性所需的三种关键物理成分:与爱丁顿限制近距离接近的膨胀信封,温度范围内的降低不相差不会导致加速流出,而质量较低的速率随着温度的降低而增加,在该温度范围内越过临界阈值。我们的场景和模型提供了可测试的预测,并为在恒星进化中对LBV阶段进行一致的理论处理打开了大门,并将其作为单恒星或二进制系统进化而产生的后果。
Luminous blue variables (LBVs) are hot, very luminous massive stars displaying large quasi-periodic variations in brightness, radius,and photospheric temperature, on timescales of years to decades. The physical origin of this variability, called S Doradus cycle after its prototype, has remained elusive. Here, we study the feedback of stellar wind mass-loss on the envelope structure in stars near the Eddington limit. We perform a time-dependent hydrodynamic stellar evolutionary calculation, applying a stellar wind mass-loss prescription with a temperature-dependence inspired by the predicted systematic increase in mass-loss rates below 25 kK. We find that when the wind mass-loss rate crosses a well-defined threshold, a discontinuous change in the wind base conditions leads to a restructuring of the stellar envelope. The induced drastic radius and temperature changes, which occur on the thermal timescale of the inflated envelope, impose in turn mass-loss variations that reverse the initial changes, leading to a cycle that lacks a stationary equilibrium configuration. Our proof-of-concept model broadly reproduces the typical observational phenomenology of the S Doradus variability. We identify three key physical ingredients needed to trigger the instability: inflated envelopes in close proximity to the Eddington limit, a temperature range where decreasing opacities do not lead to an accelerating outflow, and a mass-loss rate that increases with decreasing temperature, crossing a critical threshold value within this temperature range. Our scenario and model provide testable predictions, and open the door for a consistent theoretical treatment of the LBV phase in stellar evolution, with consequences for their further evolution as single stars or in binary systems.