论文标题

从办公桌(灵巧的手术技能)到战场 - 机器人探索性研究

From the DESK (Dexterous Surgical Skill) to the Battlefield -- A Robotics Exploratory Study

论文作者

Gonzalez, Glebys T., Kaur, Upinder, Rahma, Masudur, Venkatesh, Vishnunandan, Sanchez, Natalia, Hager, Gregory, Xue, Yexiang, Voyles, Richard, Wachs, Juan

论文摘要

短时间的响应时间对于在严峻的环境或偏远地区的未来军事医疗行动至关重要。在受伤时,这种有效的患者护理可以大大受益于半自治机器人系统的整合。为了实现自主权,机器人需要大量的演习库。尽管在受控设置中可能是可能的,但是在严重的设置中获得外科数据可能很困难。因此,在本文中,我们介绍了灵巧的手术技能(Desk)数据库,以用于机器人之间的知识转移。选择了PEG转移任务,因为它是腹腔镜训练的6个主要任务之一。另外,我们提供了一个ML框架来评估该数据库上新型传输学习方法。收集的桌面数据集包括使用四个机器人平台:金牛座II,Taurus II,Yumi和Da Vinci Research套件的一组手术机器人技能。然后,我们探索了两个不同的学习场景:无转移和域转移。在NO-Transfer方案中,训练和测试数据是从同一领域获得的。尽管在域转移方案中,训练数据是在真实机器人上测试的模拟和真实机器人数据的混合物。使用仿真数据,可以在有限或没有真实数据的情况下增强真实机器人的性能。当真实模拟数据的比率为22%-78%时,转移模型的Yumi机器人的精度为81%。对于金牛座II和Da Vinci机器人,该模型的精度分别为97.5%和93%,仅通过模拟数据训练。结果表明,模拟可用于增强培训数据,以增强实际情况下模型的性能。这表明了在偏远地区可部署的手术机器人中从手术室中使用手术数据的潜力。

Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers. While this is possible in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this paper, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of 6 main tasks of laparoscopic training. Also, we provide a ML framework to evaluate novel transfer learning methodologies on this database. The collected DESK dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the same domain; whereas in the domain-transfer scenario, the training data is a blend of simulated and real robot data that is tested on a real robot. Using simulation data enhances the performance of the real robot where limited or no real data is available. The transfer model showed an accuracy of 81% for the YuMi robot when the ratio of real-to-simulated data was 22%-78%. For Taurus II and da Vinci robots, the model showed an accuracy of 97.5% and 93% respectively, training only with simulation data. Results indicate that simulation can be used to augment training data to enhance the performance of models in real scenarios. This shows the potential for future use of surgical data from the operating room in deployable surgical robots in remote areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源