论文标题
包围紧凑物体的充电流体:力表示和形状几何形状
Charged fluids encircling compact objects: force representations and conformal geometries
论文作者
论文摘要
当环境大规模电磁场结合强力时,围绕紧凑物体旋转的带电流体可以形成独特的平衡结构。赤道和赤道室外结构都是这种平衡数字之一,与天体物理学直接相关。为了研究其几何形状和物理性质在近野体制度中,在这种情况下,一般相对性的影响起着重要作用,我们通常采用基于标准表示中编写的能量摩托明管保护的方案。在这里,我们根据两个协变量表示,开发了其有趣的替代方法,均基于能量弹药保护的超表面投影。在适当的超表面中,可以根据流体四加速度的分解来定义空间样力。每种表示都为我们提供了对流体流的特性的洞察力,在相关的保形超表面几何形状中很好地反映了。我们发现离心力的行为直接与这些共形性突出及其嵌入图的大地学有关。我们还揭示了来自普通时空的带电流体流量世界与由带电的测试粒子在保形时空中的运动粒子方程确定的世界线之间的对应关系。
Charged fluids rotating around compact objects can form unique equilibrium structures when ambient large-scale electromagnetic fields combine with strong gravity. Equatorial as well as off-equatorial toroidal structures are among such figures of equilibrium with a direct relevance for astrophysics. To investigate their geometrical shapes and physical properties in the near-horizon regime, where effects of general relativity play a significant role, we commonly employ a scheme based on the energy-momentum conservation written in a standard representation. Here, we develop its interesting alternatives in terms of two covariant force representations, both based on a hypersurface projection of the energy-momentum conservation. In a proper hypersurface, space-like forces can be defined, following from a decomposition of the fluid four-acceleration. Each of the representations provides us with an insight into properties of the fluid flow, being well reflected in related conformal hypersurface geometries; we find behaviour of centrifugal forces directly related to geodesics of these conformal hypersurfaces and their embedding diagrams. We also reveal correspondence between the charged fluid flow world-lines from an ordinary spacetime, and world-lines determined by a charged test particles equation of motion in a conformal spacetime.