论文标题

感知图像修复的图像质量评估:新的数据集,基准和指标

Image Quality Assessment for Perceptual Image Restoration: A New Dataset, Benchmark and Metric

论文作者

Gu, Jinjin, Cai, Haoming, Chen, Haoyu, Ye, Xiaoxing, Ren, Jimmy, Dong, Chao

论文摘要

图像质量评估(IQA)是快速开发图像恢复(IR)算法的关键因素。基于生成对抗网络(GAN)的最新感知性IR算法对视觉性能有了重大改进,但也对定量评估构成了巨大挑战。值得注意的是,我们观察到感知质量与评估结果之间的不一致性越来越大。我们提出两个问题:现有的IQA方法可以客观地评估最近的红外算法吗?侧重于击败当前的基准测试,我们是否会得到更好的红外算法?为了回答问题并促进IQA方法的开发,我们贡献了一个大规模的IQA数据集,称为感知图像处理算法(PIPAL)数据集。特别是,该数据集包括基于GAN的IR算法的结果,这些算法在以前的数据集中缺少。我们收集超过113万人类的判断,使用更可靠的ELO系统为PIP图像分配主观分数。基于管道,我们为IQA和SR方法提供了新的基准测试。我们的结果表明,现有的IQA方法无法公平地评估基于GAN的IR算法。虽然使用适当的评估方法很重要,但IQA方法也应与IR算法的开发一起更新。最后,我们阐明了如何改善基于GAN的失真的IQA性能。受到发现,现有的IQA方法在基于GAN的失真方面的性能不令人满意,因为它们对空间未对准的耐受性较低,我们建议通过明确考虑这种未对准来改善基于GAN的失真的IQA网络的性能。我们提出了空间扭曲差异网络,其中包括新颖的L_2合并层和空间扭曲差层。实验证明了该方法的有效性。

Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent perceptual IR algorithms based on generative adversarial networks (GANs) have brought in significant improvement on visual performance, but also pose great challenges for quantitative evaluation. Notably, we observe an increasing inconsistency between perceptual quality and the evaluation results. We present two questions: Can existing IQA methods objectively evaluate recent IR algorithms? With the focus on beating current benchmarks, are we getting better IR algorithms? To answer the questions and promote the development of IQA methods, we contribute a large-scale IQA dataset, called Perceptual Image Processing ALgorithms (PIPAL) dataset. Especially, this dataset includes the results of GAN-based IR algorithms, which are missing in previous datasets. We collect more than 1.13 million human judgments to assign subjective scores for PIPAL images using the more reliable Elo system. Based on PIPAL, we present new benchmarks for both IQA and SR methods. Our results indicate that existing IQA methods cannot fairly evaluate GAN-based IR algorithms. While using appropriate evaluation methods is important, IQA methods should also be updated along with the development of IR algorithms. At last, we shed light on how to improve the IQA performance on GAN-based distortion. Inspired by the find that the existing IQA methods have an unsatisfactory performance on the GAN-based distortion partially because of their low tolerance to spatial misalignment, we propose to improve the performance of an IQA network on GAN-based distortion by explicitly considering this misalignment. We propose the Space Warping Difference Network, which includes the novel l_2 pooling layers and Space Warping Difference layers. Experiments demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源