论文标题

自动有限样本鲁棒性指标:何时可以删除一些数据会带来很大的不同?

An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?

论文作者

Broderick, Tamara, Giordano, Ryan, Meager, Rachael

论文摘要

研究样本通常与推理和政策决策的目标人群不同。研究人员通常认为,这种偏离随机抽样的偏离 - 由于人口随时间和空间的变化,或者真正随机抽样的困难很小,它们对推断的相应影响也应该很小。因此,我们可能会担心我们的研究结论是否对我们的样本数据的一小部分敏感。我们提出了一种评估应用计量经济学结论对去除一小部分样品的敏感性的方法。手动检查所有可能的小子集的影响在计算上是不可行的,因此我们使用近似值来找到最具影响力的子集。我们的度量标准是“近似最大影响扰动”,基于经典影响函数,并且可以自动计算用于(包括(但不限于)OLS,IV,MLE,MLE,GMM和变异贝叶斯的常见方法。我们在近似性能上提供有限样本误差界。以最小的额外成本,我们在灵敏度上提供了精确的有限样本下限。我们发现灵敏度是由推理问题中的信噪比驱动的,并未反映在标准误差中,不会渐近地消失,也不是由于错误指定。尽管某些经验应用是强大的,但可以通过删除不到1%的样本来推翻一些有影响力的经济学论文的结果。

Study samples often differ from the target populations of inference and policy decisions in non-random ways. Researchers typically believe that such departures from random sampling -- due to changes in the population over time and space, or difficulties in sampling truly randomly -- are small, and their corresponding impact on the inference should be small as well. We might therefore be concerned if the conclusions of our studies are excessively sensitive to a very small proportion of our sample data. We propose a method to assess the sensitivity of applied econometric conclusions to the removal of a small fraction of the sample. Manually checking the influence of all possible small subsets is computationally infeasible, so we use an approximation to find the most influential subset. Our metric, the "Approximate Maximum Influence Perturbation," is based on the classical influence function, and is automatically computable for common methods including (but not limited to) OLS, IV, MLE, GMM, and variational Bayes. We provide finite-sample error bounds on approximation performance. At minimal extra cost, we provide an exact finite-sample lower bound on sensitivity. We find that sensitivity is driven by a signal-to-noise ratio in the inference problem, is not reflected in standard errors, does not disappear asymptotically, and is not due to misspecification. While some empirical applications are robust, results of several influential economics papers can be overturned by removing less than 1% of the sample.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源