论文标题

深度剂量插件通过基于深度学习的denoing算法来实时蒙特卡洛剂量计算

Deep Dose Plugin Towards Real-time Monte Carlo Dose Calculation Through a Deep Learning based Denoising Algorithm

论文作者

Bai, Ti, Wang, Biling, Nguyen, Dan, Jiang, Steve

论文摘要

蒙特卡洛(MC)模拟被认为是放疗剂量计算的金标准方法。但是,达到高精度需要大量的模拟历史,这很耗时。计算机图形处理单元(GPU)的使用极​​大地加速了MC模拟,并允许在几分钟内进行剂量计算以进行典型的放射治疗计划。但是,一些临床应用需要MC剂量计算的实时效率。为了解决这个问题,我们已经开发了一种实时的,基于深度学习的剂量denoiser,可以插入当前基于GPU的MC剂量引擎中,以实现实时MC剂量计算。我们使用两种不同的加速策略来实现这一目标:1)我们将体素脱落和体素洗牌操作员应用于降低输入和输出大小而不会丢失的情况下,而2)我们将3D体积卷积解耦为2D轴向卷积和一维卷积。此外,我们使用了一个弱监督的学习框架来训练网络,这大大降低了所需的训练数据集的大小,因此可以基于训练的模型快速调整对不同的辐射梁的适应。实验结果表明,所提出的DeNoiser可以在39毫秒内运行,比基线模型快11.6倍。结果,整个MC剂量计算管道可以在0.15秒内完成,包括GPU MC剂量计算和基于深度学习的DENOCISISINE,可以实现某些放射疗法应用所需的实时效率,例如在线自适应放射疗法。

Monte Carlo (MC) simulation is considered the gold standard method for radiotherapy dose calculation. However, achieving high precision requires a large number of simulation histories, which is time consuming. The use of computer graphics processing units (GPUs) has greatly accelerated MC simulation and allows dose calculation within a few minutes for a typical radiotherapy treatment plan. However, some clinical applications demand real time efficiency for MC dose calculation. To tackle this problem, we have developed a real time, deep learning based dose denoiser that can be plugged into a current GPU based MC dose engine to enable real time MC dose calculation. We used two different acceleration strategies to achieve this goal: 1) we applied voxel unshuffle and voxel shuffle operators to decrease the input and output sizes without any information loss, and 2) we decoupled the 3D volumetric convolution into a 2D axial convolution and a 1D slice convolution. In addition, we used a weakly supervised learning framework to train the network, which greatly reduces the size of the required training dataset and thus enables fast fine tuning based adaptation of the trained model to different radiation beams. Experimental results show that the proposed denoiser can run in as little as 39 ms, which is around 11.6 times faster than the baseline model. As a result, the whole MC dose calculation pipeline can be finished within 0.15 seconds, including both GPU MC dose calculation and deep learning based denoising, achieving the real time efficiency needed for some radiotherapy applications, such as online adaptive radiotherapy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源