论文标题

通过一步绑架的多目标学习来处理嘈杂的标签及其在幽门螺杆菌分段中的应用

Handling Noisy Labels via One-Step Abductive Multi-Target Learning and Its Application to Helicobacter Pylori Segmentation

论文作者

Yang, Yongquan, Yang, Yiming, Chen, Jie, Zheng, Jiayi, Zheng, Zhongxi

论文摘要

在许多现实世界中,从嘈杂的标签中学习是一个重要的问题。此关注的各种方法首先进行了对应于潜在嘈杂标记的实例的校正,然后使用已完成的校正信息更新预测模型。但是,在特定领域,例如医学组织病理学整个幻灯片图像分析(MHWSIA),专家通常难以或不可能手动实现无嘈杂的地面真相标签,从而导致具有复杂噪音的标签。这种情况提出了两个更困难的问题:1)通过标签中存在的复杂噪声,进行对应于潜在嘈杂标记的实例的方法的方法的方法具有局限性; 2)尚不清楚适当的验证/测试评估策略,因为很难收集无嘈杂的地面真相标签。对于问题1),我们提出了一步绑架的多目标学习(OSAMTL),该学习通过多目标学习程序对机器学习强加了一个步骤的逻辑推理,以限制学习模型的预测,以遵守我们对真实目标的先验知识。对于问题2),我们提出了一个逻辑评估公式(LAF),该公式通过估算学习模型的预测与从OSAMTL的一步逻辑推理的结果中叙述的逻辑事实之间的一致性来评估方法的逻辑合理性。基于MHWSIA中的幽门螺杆菌(H. Pylori)分割任务,我们表明OSAMTL可以使机器学习模型实现逻辑上更合理的预测,这超出了处理复杂噪声标签的各种最新方法。

Learning from noisy labels is an important concern in plenty of real-world scenarios. Various approaches for this concern first make corrections corresponding to potentially noisy-labeled instances, and then update predictive model with information of the made corrections. However, in specific areas, such as medical histopathology whole slide image analysis (MHWSIA), it is often difficult or impossible for experts to manually achieve the noisy-free ground-truth labels which leads to labels with complex noise. This situation raises two more difficult problems: 1) the methodology of approaches making corrections corresponding to potentially noisy-labeled instances has limitations due to the complex noise existing in labels; and 2) the appropriate evaluation strategy for validation/testing is unclear because of the great difficulty in collecting the noisy-free ground-truth labels. For the problem 1), we present one-step abductive multi-target learning (OSAMTL) that imposes a one-step logical reasoning upon machine learning via a multi-target learning procedure to constrain the predictions of the learning model to be subject to our prior knowledge about the true target. For the problem 2), we propose a logical assessment formula (LAF) that evaluates the logical rationality of the outputs of an approach by estimating the consistencies between the predictions of the learning model and the logical facts narrated from the results of the one-step logical reasoning of OSAMTL. Based on the Helicobacter pylori (H. pylori) segmentation task in MHWSIA, we show that OSAMTL enables the machine learning model achieving logically more rational predictions, which is beyond various state-of-the-art approaches in handling complex noisy labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源