论文标题
根据Asteroseisic的前进和反向方法,对$α$ CEN AB进行了重新研究
Reinvestigating $α$ Cen AB in light of asteroseismic forward and inverse methods
论文作者
论文摘要
$α$ CEN恒星系统是距离我们太阳的最接近的邻居。它的主要成分是由两个主序列组成的二进制组成部分,一个比太阳更大,一个更大的巨大。该系统的明亮幅度导致了很长一段时间的天文观察,这使其成为恒星物理学的吸引人的测试。特别是,在$α$ CEN A和B中对恒星脉动的检测揭示了星星学的潜力确定其基本恒星参数。小意次研究还集中在A组分中的对流核心上,但尚未确认。确定太阳表面丰度和出色的不相处的进展为出色的理论模型提供了新的输入。我们研究了它们对参考系统的影响,例如$α$ CEN AB。我们试图通过分析不同恒星物理学的作用和星际抗逆方法的潜力来确认$α$ CEN A中的对流核心的存在。我们提出了一系列使用正向方法建模进行的新系列的星际校准校准,并在模型中包括更新的化学混合物和不透明度。然后,我们根据针对太阳能恒星开发的反相反方法的最新诊断工具的帮助来补充分析。包含更新的化学混合物 - 金属含量较低 - 似乎减少了每个组件的预测性磷质量。诸如频率比率之类的古典星号指标,也不偏向于$α$ CEN A中的对流核心的存在。观察性地震数据集的质量是解决问题的主要限制因素。实施新的观察策略来提高脉动频率的精度肯定会完善该二进制系统的Asterosemology的结果。
The $α$ Cen stellar system is the closest neighbour to our Sun. Its main component is a binary composed of two main-sequence stars, one more massive than the Sun and one less massive. The system's bright magnitude led to a wealth of astronomical observations over a long period, making it an appealing testbed for stellar physics. In particular, detection of stellar pulsations in both $α$ Cen A and B has revealed the potential of asteroseismology for determining its fundamental stellar parameters. Asteroseismic studies have also focused on the presence of a convective core in the A component, but as yet without definitive confirmation. Progress in the determination of solar surface abundances and stellar opacities have yielded new input for stellar theoretical models. We investigate their impact on a reference system such as $α$ Cen AB. We seek to confirm the presence of a convective core in $α$ Cen A by analysing the role of different stellar physics and the potential of asteroseismic inverse methods. We present a new series of asteroseismic calibrations carried out using forward approach modelling and including updated chemical mixture and opacities in the models. We then complement our analysis with help of recent asteroseismic diagnostic tools based on inverse methods developed for solar-like stars. The inclusion of an updated chemical mixture -- that is less metal-rich -- appears to reduce the predicted asteroseismic masses of each component. Neither classical asteroseismic indicators such as frequency ratios, nor asteroseismic inversions favour the presence of a convective core in $α$ Cen A. The quality of the observational seismic dataset is the main limiting factor to settle the issue. Implementing new observing strategies to improve the precision on the pulsation frequencies would certainly refine the outcome of asteroseismology for this binary system.