论文标题

构图运算符的界限在一般加权的分析功能的牢固空间上

Boundedness of composition operators on general weighted Hardy spaces of analytic functions

论文作者

Lefèvre, Pascal, Li, Daniel, Queffélec, Hervé, Rodríguez-Piazza, Luis

论文摘要

我们表征了(本质上)降低正数的序列$β$ =($β$ n),其中H 2($β$)上的所有组成算子均有限,其中H 2($β$)是单位磁盘中分析函数f的空间,因此$ \ infty $ \ infty $ n = 0 | c n = 0 | c n | 2 $β$ n <$ \ infty $如果f(z)= $ \ infty $ n = 0 c n z n。当不假定$β$基本上减少时,我们还提供有界性的条件。

We characterize the (essentially) decreasing sequences of positive numbers $β$ = ($β$ n) for which all composition operators on H 2 ($β$) are bounded, where H 2 ($β$) is the space of analytic functions f in the unit disk such that $\infty$ n=0 |c n | 2 $β$ n < $\infty$ if f (z) = $\infty$ n=0 c n z n. We also give conditions for the boundedness when $β$ is not assumed essentially decreasing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源