论文标题

通过基于神经模拟的推断,通过恒星流限制温暖的暗物质

Towards constraining warm dark matter with stellar streams through neural simulation-based inference

论文作者

Hermans, Joeri, Banik, Nilanjan, Weniger, Christoph, Bertone, Gianfranco, Louppe, Gilles

论文摘要

对恒星流的密度观察到的扰动的统计分析原则上可以将严格的对比对暗物质subhaloes的质量函数进行严格的矛盾,从而可以用来限制暗物质粒子的质量。但是,相对于流和亚李斯参数的恒星密度的可能性涉及解决一个棘手的反问题,该问题取决于模拟模型隐含定义的所有可能的正向实现的集成。为了推断次荷兰的丰度,先前的分析依赖于近似贝叶斯计算(ABC)以及域动机但手工制作的摘要统计数据。在这里,我们介绍了基于摊销的近似似然比(AALR)的无似然贝叶斯推理管道,该管道会自动学习数据和模拟器参数之间的映射,并消除需要手工制作可能不足的汇总统计量。我们将这种方法应用于简化的情况,在这些情况下,恒星流仅被暗物质subhalos扰动,从而忽略了重型型子结构,并描述了几种诊断,这些诊断证明了新方法的有效性和学习估算器的统计质量。

A statistical analysis of the observed perturbations in the density of stellar streams can in principle set stringent contraints on the mass function of dark matter subhaloes, which in turn can be used to constrain the mass of the dark matter particle. However, the likelihood of a stellar density with respect to the stream and subhaloes parameters involves solving an intractable inverse problem which rests on the integration of all possible forward realisations implicitly defined by the simulation model. In order to infer the subhalo abundance, previous analyses have relied on Approximate Bayesian Computation (ABC) together with domain-motivated but handcrafted summary statistics. Here, we introduce a likelihood-free Bayesian inference pipeline based on Amortised Approximate Likelihood Ratios (AALR), which automatically learns a mapping between the data and the simulator parameters and obviates the need to handcraft a possibly insufficient summary statistic. We apply the method to the simplified case where stellar streams are only perturbed by dark matter subhaloes, thus neglecting baryonic substructures, and describe several diagnostics that demonstrate the effectiveness of the new method and the statistical quality of the learned estimator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源