论文标题
多变量多项式环
A nice involution for multivariable polynomial rings
论文作者
论文摘要
The principal minors of the Toeplitz matrix $\left( x_{i-j+1}\right)_{1\le i,j,\le n}$, where $x_0=1, x_k=0$ if $k\le -1$, directly determine an involution of the polynomial ring $R[x_1, ... ,x_n]$ over any commutative ring $R$.
The principal minors of the Toeplitz matrix $\left( x_{i-j+1}\right)_{1\le i,j,\le n}$, where $x_0=1, x_k=0$ if $k\le -1$, directly determine an involution of the polynomial ring $R[x_1, ... ,x_n]$ over any commutative ring $R$.