论文标题
蒙特卡洛辐射转移中的散射顺序问题
The scattering order problem in Monte Carlo radiative transfer
论文作者
论文摘要
辐射转移模拟是一个重要的工具,它使我们能够生成各种天体物理对象的合成图像。在复杂的三维几何形状的情况下,经常使用基于蒙特卡洛的方法,该方法在光子穿过并与环境相互作用时模拟光子包装。先前的研究表明,在高光学深度的制度中,所需数量的模拟光子包装强烈上升和估计的通量可能会严重低估。在本文中,我们确定了蒙特卡洛辐射转移模拟出现的两个问题,这些问题阻碍了适当的通量确定:首先,光子封装路径的概率和重量之间的不匹配和第二,第二,需要模拟广泛的高散射顺序的必要性。此外,我们认为剥离方法部分解决了这些问题,我们还提出了一种扩展的剥离方法。我们提出的方法改善了其基本变体的几个缺点,并依赖于预先计算的球体光谱的利用。然后,我们将这两种剥离方法与拆分方法和拉伸方法相结合,并数值评估其功能,而不是在无限平面 - 平行的平板设置中进行的纯拆分$ \,\&\,$ stretch方法。我们发现,剥离方法大大提高了这些模拟的性能。特别是,在$τ_ {\ rm max} = 75 $的横向光学深度下,我们的方法的错误明显低于以前的方法,同时保存$ {>} 95 \%$ $计算时间。最后,我们讨论了在扩展的剥离方法中的极化和mie散射的包含,并认为可能有必要配备未来的蒙特卡洛辐射转移模拟,并使用其他先进的探路技术。
Radiative transfer simulation is an important tool that allows us to generate synthetic images of various astrophysical objects. In the case of complex three-dimensional geometries, a Monte Carlo-based method that simulates photon packages as they move through and interact with their environment is often used. Previous studies have shown, in the regime of high optical depths, that the required number of simulated photon packages strongly rises and estimated fluxes may be severely underestimated. In this paper we identify two problems that arise for Monte Carlo radiative transfer simulations that hinder a proper determination of flux: first, a mismatch between the probability and weight of the path of a photon package and second, the necessity of simulating a wide range of high scattering orders. Furthermore, we argue that the peel-off method partly solves these problems, and we additionally propose an extended peel-off method. Our proposed method improves several shortcomings of its basic variant and relies on the utilization of precalculated sphere spectra. We then combine both peel-off methods with the Split method and the Stretch method and numerically evaluate their capabilities as opposed to the pure Split$\,\&\,$Stretch method in an infinite plane-parallel slab setup. We find that the peel-off method greatly enhances the performance of these simulations; in particular, at a transverse optical depth of $τ_{\rm max}=75$ our method achieved a significantly lower error than previous methods while simultaneously saving ${>}95\%$ computation time. Finally, we discuss the inclusion of polarization and Mie-scattering in the extended peel-off method, and argue that it may be necessary to equip future Monte Carlo radiative transfer simulations with additional advanced pathfinding techniques.