论文标题
riemann $ζ(4)$对$ o \ left的功能贡献({{α_s}^5 \ right)$ Adler d函数的条款和Bjorken pallalized sum规则在$ su \ left(n_c \ right)$ qcd:结果和后果:结果和后果
Riemann $ζ(4)$ function contributions to $O\left({α_s}^5\right)$ terms of Adler D-function and Bjorken polarized sum rule in $SU\left(N_c\right)$ QCD: results and consequences
论文作者
论文摘要
在欧几里得空间中定义的量子染色体(QCD)中的两个重新归一化组不变量,即电子对Hadrons和Bjorken极化深度无弹性散射规则的电子 - 尖端and灭的Adler D功能。结果表明,以$ \叠加{ms} $对他们进行的第5级订单更正 - 像更额定的处方,与riemann $ζ$ -Function $ζ\ function $ζ\ weft(4 \右)$成比例,可以通过过渡到C-Scheme的过渡,并具有$β$ -Funtinction and novan and novain and novaikov and shovan novaikov $β$ - 功能$ \ Mathcal {n} = 1 $ supersymmetric量规理论。这些校正的一般分析表达式在$ su \ left(n_c \右)中推导$ qCD,并显示其比例不变性。为这些贡献进行了$β$ - 扩展程序,并讨论了普通船员身份的第5阶次取消它们。
Two renormalization group invariant quantities in quantum chromodinamics (QCD), defined in Euclidean space,namely, Adler D-function of electron-positron annihilation to hadrons and Bjorken polarized deep-inelastic scattering sum rule, are considered. It is shown, that the 5-th order corrections to them in $\overline{MS}$-like renormalization prescriptions, proportional to Riemann $ζ$-function $ζ\left(4\right)$, can be restored by the transition to the C-scheme, with the $β$-function, analogous to Novikov, Shifman, Vainshtein and Zakharov exact $β$-function in $\mathcal{N}=1$ supersymmetric gauge theories. The general analytical expression for these corrections in $SU\left(N_c\right)$ QCD is deduced and their scale invariance is shown. The $β$-expansion procedure for these contributions is performed and mutual cancellation of them in the 5-th order of the generalized Crewther identity are discussed.