论文标题

以对象为中心表示的自我监督的视觉增强学习

Self-supervised Visual Reinforcement Learning with Object-centric Representations

论文作者

Zadaianchuk, Andrii, Seitzer, Maximilian, Martius, Georg

论文摘要

自主代理需要大量技能曲目,以合理地对他们以前从未见过的新任务采取行动。但是,对于任何自主代理人来说,仅使用一系列高维,非结构化和未标记的观察来获得这些技能是一个棘手的挑战。以前的方法已使用变异自动编码器将场景编码为低维矢量,可以用作代理商发现新技能的目标。然而,在组成/多对象环境中,很难将所有变异因素分解为整个场景的固定长度表示。我们建议将以对象为中心的表示用作模块化和结构化的观测空间,该观察空间是通过组成生成世界模型来学习的。我们表明,表示形式中的结构与目标条件的注意力政策相结合,有助于自主剂发现和学习有用的技能。这些技能可以进一步合并以解决构图任务,例如操纵几个不同的对象。

Autonomous agents need large repertoires of skills to act reasonably on new tasks that they have not seen before. However, acquiring these skills using only a stream of high-dimensional, unstructured, and unlabeled observations is a tricky challenge for any autonomous agent. Previous methods have used variational autoencoders to encode a scene into a low-dimensional vector that can be used as a goal for an agent to discover new skills. Nevertheless, in compositional/multi-object environments it is difficult to disentangle all the factors of variation into such a fixed-length representation of the whole scene. We propose to use object-centric representations as a modular and structured observation space, which is learned with a compositional generative world model. We show that the structure in the representations in combination with goal-conditioned attention policies helps the autonomous agent to discover and learn useful skills. These skills can be further combined to address compositional tasks like the manipulation of several different objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源