论文标题
曲率正则化以防止图形嵌入中的失真
Curvature Regularization to Prevent Distortion in Graph Embedding
论文作者
论文摘要
关于图形嵌入的最新研究已在各种应用中取得了成功。大多数图形嵌入方法将图中的接近度保存到嵌入空间中的歧管中。我们争辩说,关于这种邻近性的策略的一个重要但被忽视的问题:图形拓扑模式,虽然通过保留接近度可以很好地保留到嵌入式歧管中,但可能会在环境嵌入欧几里得空间中扭曲,因此检测到它们对于机器学习模型而言很难。为了解决该问题,我们提出曲率正则化,以实施嵌入歧管的平坦度,从而防止失真。我们提出了一种新型的基于角度的截面曲率,称为ABS曲率,因此在图嵌入过程中诱导了三种曲率正则化,以诱导平坦的嵌入歧管。我们将曲率正则化整合到五个流行的邻近性嵌入方法中,并且在两个应用中的经验结果显示,对广泛的开放图数据集有显着改进。
Recent research on graph embedding has achieved success in various applications. Most graph embedding methods preserve the proximity in a graph into a manifold in an embedding space. We argue an important but neglected problem about this proximity-preserving strategy: Graph topology patterns, while preserved well into an embedding manifold by preserving proximity, may distort in the ambient embedding Euclidean space, and hence to detect them becomes difficult for machine learning models. To address the problem, we propose curvature regularization, to enforce flatness for embedding manifolds, thereby preventing the distortion. We present a novel angle-based sectional curvature, termed ABS curvature, and accordingly three kinds of curvature regularization to induce flat embedding manifolds during graph embedding. We integrate curvature regularization into five popular proximity-preserving embedding methods, and empirical results in two applications show significant improvements on a wide range of open graph datasets.