论文标题
高阶渐近保护灰色辐射转移方程的不连续的盖金方法
High order asymptotic preserving discontinuous Galerkin methods for gray radiative transfer equations
论文作者
论文摘要
在本文中,我们将开发一类高级渐近保存(AP)不连续的盖尔金(DG)方法,用于非线性时间依赖性灰色辐射传递方程(GRTES)。受工作\ cite {peng2020starition}的启发,在该工作中,我们提出了用于线性传输方程的稳定性高阶AP DG方法,我们建议通过添加加权线性扩散项下的微型麦克罗分解框架下的非线性GRT。在差异极限下,双曲线,即$ΔT= \ Mathcal {o}(h)$,其中$ΔT$和$ h $分别是时间步长和网状大小,而不是抛物线寄生虫$ΔT= \ nathcal {o}(o}(h^2)$时间步长限制,也可以免费获得Photon的免费路径。主要的新成分是,我们进一步采用了带有预测校正过程的PICARD迭代,将所得的全球非线性系统与来自外部迭代循环的局部非线性代数方程的线性系统脱离。我们的方案被证明是渐近保存和渐近准确的。对一个和两个空间维度问题进行了数值测试,以证明我们的方案具有高级,有效而有效。
In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work \cite{Peng2020stability}, in which stability enhanced high order AP DG methods are proposed for linear transport equations, we propose to pernalize the nonlinear GRTEs under the micro-macro decomposition framework by adding a weighted linear diffusive term. In the diffusive limit, a hyperbolic, namely $Δt=\mathcal{O}(h)$ where $Δt$ and $h$ are the time step and mesh size respectively, instead of parabolic $Δt=\mathcal{O}(h^2)$ time step restriction is obtained, which is also free from the photon mean free path. The main new ingredient is that we further employ a Picard iteration with a predictor-corrector procedure, to decouple the resulting global nonlinear system to a linear system with local nonlinear algebraic equations from an outer iterative loop. Our scheme is shown to be asymptotic preserving and asymptotically accurate. Numerical tests for one and two spatial dimensional problems are performed to demonstrate that our scheme is of high order, effective and efficient.