论文标题
在海森堡类型组上振荡光谱乘数
Oscillating spectral multipliers on groups of Heisenberg type
论文作者
论文摘要
我们为海森堡类型的谎言群体建立了一类振荡频谱乘数的端点估计。该分析遵循第二和第四作者引起的较早论点,但需要对穆勒和塞格引起的这些组的波方程进行详细分析。我们强调并发展了振荡乘数的尖锐界限与确定Mihlin-Hörmander乘数所需的最小平滑度的问题,这是为Heisenberg类型组解决的问题,但仍针对其他组开放。
We establish endpoint estimates for a class of oscillating spectral multipliers on Lie groups of Heisenberg type. The analysis follows an earlier argument due to the second and fourth author but requires the detailed analysis of the wave equation on these groups due to Müller and Seeger. We highlight and develop the connection between sharp bounds for oscillating multipliers and the problem of determining the minimal amount of smoothness required for Mihlin-Hörmander multipliers, a problem that was solved for groups of Heisenberg type but remains open for other groups.