论文标题
INAS二维电子气体中的几电子单点和双量子点
Few-electron Single and Double Quantum Dots in an InAs Two-Dimensional Electron Gas
论文作者
论文摘要
大多数针对自旋Qubit的原则实验是使用基于GAA的量子点进行的,因为它们具有出色的控制,它们对隧道障碍以及轨道和旋转自由度提供了出色的控制。在这里,我们介绍了在INAS二维电子气体(2DEG)中托管的高质量单量子点和双量子点的首次实现,并证明了准确的控制到少数电子制度,我们观察到清晰的杂种效应和单曲线效应和单曲线 - 三曲线自旋封锁。我们测量一个$ 16 $的电子$ g $因素,以及$ \ sim 0.6 \,\ mathrm {mt} $的点上的典型随机超精细场。我们估计系统中的自旋轨道长度为$ \ sim 5-10 \,μ\ mathrm {m} $,它比在INAS纳米结构中通常测量的近两个数量级,这是通过非常对称的量子设计来实现的。这些有利的特性使INAS 2DEG在地图上是一个引人注目的主机,用于研究旋转量子的基本方面。此外,在具有较大RASHBA系数的材料中具有弱自旋轨道耦合可能会为具有自旋轨道耦合的工程结构提供途径,并可以在空间和/或时间上进行本地控制。
Most proof-of-principle experiments for spin qubits have been performed using GaAs-based quantum dots because of the excellent control they offer over tunneling barriers and the orbital and spin degrees of freedom. Here, we present the first realization of high-quality single and double quantum dots hosted in an InAs two-dimensional electron gas (2DEG), demonstrating accurate control down to the few-electron regime, where we observe a clear Kondo effect and singlet-triplet spin blockade. We measure an electronic $g$-factor of $16$ and a typical magnitude of the random hyperfine fields on the dots of $\sim 0.6\, \mathrm{mT}$. We estimate the spin-orbit length in the system to be $\sim 5-10\, μ\mathrm{m}$, which is almost two orders of magnitude longer than typically measured in InAs nanostructures, achieved by a very symmetric design of the quantum well. These favorable properties put the InAs 2DEG on the map as a compelling host for studying fundamental aspects of spin qubits. Furthermore, having weak spin-orbit coupling in a material with a large Rashba coefficient potentially opens up avenues for engineering structures with spin-orbit coupling that can be controlled locally in space and/or time.