论文标题

在应力张量灯光射线操作员代数上

On the Stress Tensor Light-ray Operator Algebra

论文作者

Belin, Alexandre, Hofman, Diego M., Mathys, Grégoire, Walters, Matthew T.

论文摘要

我们研究涉及$ \ int dx^ - \ left(x^ - \ right)^{n+2} t _ { - }(\ vec {x})$的相关函数。我们计算了涉及自由和全息形式保形场理论中外部标量状态的两个,三和四点函数。从这些信息中,我们提取这些轻射运算符的代数。我们发现一个由$ n = \ { - 2,-1、0、1、2 \} $跨越的全球子代理,它歼灭了共同形式不变的真空,并在共同体的共形组的作用下进行转换,以保留光射线。此范围之外的运营商与文献中先前的建议一致,这引起了无限的中心术语。在自由理论中,即使在全球子级别的某些操作员放置在同一空平面上的空格分离上时,也无法上下班。缺乏交通量是无法整合的,这对在偶然$ \ vec {x} $坐标处建造良好定义的轻射线代数构成阻碍。对于全息CFTS,行为恶化和运算符,$ n \ neq -2 $无法在Spacelike Spairation上通勤。我们在大部分广告中重现了这一结果,在该广告中,我们向插入(指定)操作员在边界上插入的新的精确冲击解决方案偶尔。

We study correlation functions involving generalized ANEC operators of the form $\int dx^- \left(x^-\right)^{n+2} T_{--}(\vec{x})$ in four dimensions. We compute two, three, and four-point functions involving external scalar states in both free and holographic Conformal Field Theories. From this information, we extract the algebra of these light-ray operators. We find a global subalgebra spanned by $n=\{-2, -1, 0, 1, 2\}$ which annihilate the conformally invariant vacuum and transform among themselves under the action of the collinear conformal group that preserves the light-ray. Operators outside this range give rise to an infinite central term, in agreement with previous suggestions in the literature. In free theories, even some of the operators inside the global subalgebra fail to commute when placed at spacelike separation on the same null-plane. This lack of commutativity is not integrable, presenting an obstruction to the construction of a well defined light-ray algebra at coincident $\vec{x}$ coordinates. For holographic CFTs the behavior worsens and operators with $n \neq -2$ fail to commute at spacelike separation. We reproduce this result in the bulk of AdS where we present new exact shockwave solutions dual to the insertions of these (exponentiated) operators on the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源