论文标题
利用常规的底底图像通过对抗学习和伪标记来培训UWF底面诊断模型
Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis Models via Adversarial Learning and Pseudo-Labeling
论文作者
论文摘要
最近,由于其更广泛的见解比常规30度-60度基底摄像机检测到更多信息,因此逐渐引入了Optos摄像机的超宽场(UWF)200 \ degry〜〜 ^底面成像。与UWF眼底图像相比,常规的底面图像包含大量高质量和良好的数据。由于域间隙,经常底底图像训练以识别UWF底部图像的模型表现不佳。因此,鉴于注释医学数据是劳动密集型且耗时的,因此,我们探索了如何利用常规的底面图像来改善有限的UWF底底数据和注释,以进行更有效的培训。我们建议使用修改周期生成的对抗网络(Cyclegan)模型来弥合常规和UWF底面之间的差距,并为训练生成其他UWF底面图像。在损失GAN以改善和调节生成数据的质量时,提出了一致性正规化项。我们的方法不需要配对两个域中的图像,甚至不需要语义标签是相同的,这为数据收集提供了极大的便利。此外,我们表明我们的方法对使用伪标记技术引入的未标记数据引入的噪声和错误。我们评估了方法对几种常见的眼底疾病和任务的有效性,例如糖尿病性视网膜病(DR)分类,病变检测和底层底面分割。实验结果表明,我们所提出的方法同时实现了学到的表示形式的卓越概括性和多个任务的绩效改进。
Recently, ultra-widefield (UWF) 200\degree~fundus imaging by Optos cameras has gradually been introduced because of its broader insights for detecting more information on the fundus than regular 30 degree - 60 degree fundus cameras. Compared with UWF fundus images, regular fundus images contain a large amount of high-quality and well-annotated data. Due to the domain gap, models trained by regular fundus images to recognize UWF fundus images perform poorly. Hence, given that annotating medical data is labor intensive and time consuming, in this paper, we explore how to leverage regular fundus images to improve the limited UWF fundus data and annotations for more efficient training. We propose the use of a modified cycle generative adversarial network (CycleGAN) model to bridge the gap between regular and UWF fundus and generate additional UWF fundus images for training. A consistency regularization term is proposed in the loss of the GAN to improve and regulate the quality of the generated data. Our method does not require that images from the two domains be paired or even that the semantic labels be the same, which provides great convenience for data collection. Furthermore, we show that our method is robust to noise and errors introduced by the generated unlabeled data with the pseudo-labeling technique. We evaluated the effectiveness of our methods on several common fundus diseases and tasks, such as diabetic retinopathy (DR) classification, lesion detection and tessellated fundus segmentation. The experimental results demonstrate that our proposed method simultaneously achieves superior generalizability of the learned representations and performance improvements in multiple tasks.