论文标题

学习混合运动技能 - 学会利用残差动态并调节基于模型的步态控制

Learning Hybrid Locomotion Skills -- Learn to Exploit Residual Dynamics and Modulate Model-based Gait Control

论文作者

Kasaei, Mohammadreza, Abreu, Miguel, Lau, Nuno, Pereira, Artur, Reis, Luis Paulo, Li, Zhibin

论文摘要

这项工作旨在结合机器机器人的机器学习和控制方法,并开发了一个混合框架,以实现与外部扰动平衡的新能力。该框架嵌入了一个基于分析控制的完全参数闭环步态发生器。最重要的是,具有对称局部数据增强的神经网络学会了自动调整步态内核的参数,并为所有关节作为残差动力学生成补偿性动作,从而显着提高意外扰动下的稳定性。在一组具有挑战性的模拟场景中评估了提出的框架的性能。与从大型外力恢复的基线相比,结果显示出显着改善。此外,产生的行为更自然,人性化和强大的噪音感应。

This work aims to combine machine learning and control approaches for legged robots, and developed a hybrid framework to achieve new capabilities of balancing against external perturbations. The framework embeds a kernel which is a fully parametric closed-loop gait generator based on analytical control. On top of that, a neural network with symmetric partial data augmentation learns to automatically adjust the parameters for the gait kernel and to generate compensatory actions for all joints as the residual dynamics, thus significantly augmenting the stability under unexpected perturbations. The performance of the proposed framework was evaluated across a set of challenging simulated scenarios. The results showed considerable improvements compared to the baseline in recovering from large external forces. Moreover, the produced behaviours are more natural, human-like and robust against noisy sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源