论文标题
导航语义图像编辑的GAN参数空间
Navigating the GAN Parameter Space for Semantic Image Editing
论文作者
论文摘要
生成对抗网络(GAN)当前是可视编辑的必不可少的工具,是图像到图像翻译和图像恢复管道的标准组成部分。此外,GAN对于可控生成特别有用,因为它们的潜在空间包含广泛的可解释方向,非常适合语义编辑操作。通过沿着这些方向逐渐更改潜在代码,可以产生令人印象深刻的视觉效果,而无需gan。 在本文中,我们可以大大扩展最先进的模型(例如stylegan2)可以实现的视觉效果范围。与主要由潜在代码运行的现有作品相反,我们在发电机参数的空间中发现了可解释的方向。通过几种简单的方法,我们探讨了这个空间,并证明它还包含了许多可解释的方向,这些方向是非平凡语义操纵的绝佳来源。发现的操作无法通过转换潜在代码来实现,并且可用于编辑合成图像和真实图像。我们发布代码和模型,并希望它们将作为方便的工具,以进一步努力基于GAN的图像编辑。
Generative Adversarial Networks (GANs) are currently an indispensable tool for visual editing, being a standard component of image-to-image translation and image restoration pipelines. Furthermore, GANs are especially useful for controllable generation since their latent spaces contain a wide range of interpretable directions, well suited for semantic editing operations. By gradually changing latent codes along these directions, one can produce impressive visual effects, unattainable without GANs. In this paper, we significantly expand the range of visual effects achievable with the state-of-the-art models, like StyleGAN2. In contrast to existing works, which mostly operate by latent codes, we discover interpretable directions in the space of the generator parameters. By several simple methods, we explore this space and demonstrate that it also contains a plethora of interpretable directions, which are an excellent source of non-trivial semantic manipulations. The discovered manipulations cannot be achieved by transforming the latent codes and can be used to edit both synthetic and real images. We release our code and models and hope they will serve as a handy tool for further efforts on GAN-based image editing.