论文标题
真实司法的拓扑复杂性
Topological complexity of real Grassmannians
论文作者
论文摘要
我们使用对真实Grassmann歧管的共同体戒指$ G_K(\ Mathbb {r}^n)$的详细知识来计算零级别的杯状长度,以及$ k $ linear子空间的运动计划的估算拓扑复杂性,$ \ mathbb {r}^n $。此外,我们还获得有关$ g_k(\ Mathbb {r}^n)$的Lusternik-Schnirelmann类别和拓扑复杂性的单调性的结果。
We use some detailed knowledge of the cohomology ring of real Grassmann manifolds $G_k(\mathbb{R}^n)$ to compute zero-divisor cup-length and estimate topological complexity of motion planning for $k$-linear subspaces in $\mathbb{R}^n$. In addition, we obtain results about monotonicity of Lusternik-Schnirelmann category and topological complexity of $G_k(\mathbb{R}^n)$ as a function of $n$.