论文标题
GraphSeam:语义紫外线映射的监督图形学习框架
GraphSeam: Supervised Graph Learning Framework for Semantic UV Mapping
论文作者
论文摘要
最近,为自动化紫外线映射而进行了巨大的努力,这是将3D维表面映射到紫外线空间的过程,同时最大程度地减少了变形和接缝长度。尽管最先进的方法,自动启动和选择方法通过能量最小化方法解决了这一任务,但它们未能产生语义接缝样式,这是专业艺术家的重要因素。图形神经网络(GNNS)的最新出现以及网格可以表示为图形的特定形式的事实,为计算机图形域中的新型基于图形学习的解决方案打开了新的桥梁。在这项工作中,我们首次利用监督GNN的力量提出一个全自动的UV映射框架,使用户能够复制其所需的接缝样式,同时减少失真和接缝长度。为此,我们提供了增强和窃取工具,以使艺术家能够创建其数据集并训练网络以生成所需的接缝风格。我们提供了一种互补的后处理方法,用于减少基于图形算法的失真,以优化低信心缝预测,并使用骨骼化方法减少接缝长度(或在我们有监督的情况下壳的数量)。
Recently there has been a significant effort to automate UV mapping, the process of mapping 3D-dimensional surfaces to the UV space while minimizing distortion and seam length. Although state-of-the-art methods, Autocuts and OptCuts, addressed this task via energy-minimization approaches, they fail to produce semantic seam styles, an essential factor for professional artists. The recent emergence of Graph Neural Networks (GNNs), and the fact that a mesh can be represented as a particular form of a graph, has opened a new bridge to novel graph learning-based solutions in the computer graphics domain. In this work, we use the power of supervised GNNs for the first time to propose a fully automated UV mapping framework that enables users to replicate their desired seam styles while reducing distortion and seam length. To this end, we provide augmentation and decimation tools to enable artists to create their dataset and train the network to produce their desired seam style. We provide a complementary post-processing approach for reducing the distortion based on graph algorithms to refine low-confidence seam predictions and reduce seam length (or the number of shells in our supervised case) using a skeletonization method.