论文标题
FFCI:可解释自动评估摘要的框架
FFCI: A Framework for Interpretable Automatic Evaluation of Summarization
论文作者
论文摘要
在本文中,我们提出了FFCI,这是一个构成四个要素的细粒度摘要评估框架:忠诚度(事实与来源的事实一致性),焦点(相对于参考的摘要内容的精确),覆盖范围(召回相对于参考文献的摘要内容)和内部式相干性(文档插入式置换)。我们构建了一个新型数据集,以基于评估指标和基于模型的评估方法的交叉比较来评估FFCI的四个维度中的每个维度中的每个维度,以评估FFCI的四个维度中的每个维度,包括问题答案(QA)方法(包括语义文本相似性(STS),下一个定期(NSpspeors)(nsp)和score scores corors corors scores。然后,我们将开发的指标应用于评估两个数据集的广泛汇总模型,并有一些令人惊讶的发现。
In this paper, we propose FFCI, a framework for fine-grained summarization evaluation that comprises four elements: faithfulness (degree of factual consistency with the source), focus (precision of summary content relative to the reference), coverage (recall of summary content relative to the reference), and inter-sentential coherence (document fluency between adjacent sentences). We construct a novel dataset for focus, coverage, and inter-sentential coherence, and develop automatic methods for evaluating each of the four dimensions of FFCI based on cross-comparison of evaluation metrics and model-based evaluation methods, including question answering (QA) approaches, semantic textual similarity (STS), next-sentence prediction (NSP), and scores derived from 19 pre-trained language models. We then apply the developed metrics in evaluating a broad range of summarization models across two datasets, with some surprising findings.