论文标题
阈值前分数敏感性在Misiurewicz参数
Pre-threshold fractional susceptibility functions at Misiurewicz parameters
论文作者
论文摘要
我们表明,某些真实分析的单形族,在Misiurewicz参数和分数分化指数$ 0 \leη<1/2 $的响应,冷冻和半二元组的分数敏感性功能上是整体上的圆盘上的半径大于一个。在上述易感性功能的情况下,这是解决Baladi和Smania的猜想的一步。
We show that the response, frozen and semifreddo fractional susceptibility functions of certain real-analytic unimodal families, at Misiurewicz parameters and for fractional differentiation index $0\leη<1/2$, are holomorphic on a disk of radius greater than one. This is a step towards solving a conjecture of Baladi and Smania, in the case of the aforementioned susceptibility functions.