论文标题
从未标记的文本中学习关系原型,用于长尾关系提取
Learning Relation Prototype from Unlabeled Texts for Long-tail Relation Extraction
论文作者
论文摘要
关系提取(RE)是通过从文本中提取实体关系来完成知识图(kg)的重要步骤。但是,它通常会遇到长尾问题。培训数据主要集中于几种类型的关系,从而导致缺乏对其余类型关系的足够注释。在本文中,我们提出了一种一般方法,以从未标记的文本中学习原型原型,以促进长尾关系提取,并通过通过足够的培训数据从关系类型中转移知识。我们将关系原型学习为实体之间的隐式因素,这反映了关系的含义以及它们的转移学习的二次。具体而言,我们从文本中构造了一个共发生的图形,并捕获了嵌入学习的一阶和一阶实体接近。基于此,我们进一步优化了与实体对相应原型的距离,可以很容易地适应几乎任意的RE框架。因此,学习不经常或均匀的关系类型将通过一对实体和大规模的文本信息从语义上的关系中受益。我们在两个公开可用的数据集上进行了广泛的实验:纽约时报和Google Distant Supperision.com。与八个目前的“目前”的型号相比,我们的八个目前的现有模型可以在八个目前的模型上进行大量改进(我们的提议大量改进(平均值)(4.1%F1)。关于长尾关系的进一步证明了学习关系原型的有效性。我们进一步进行消融研究以对不同组件的影响进行评估,并将其应用于四个基本关系提取模型以验证概括能力。在本文中,我们分析了几个示例案例以给出直观的印象作为定性分析。我们的代码将在稍后发布。
Relation Extraction (RE) is a vital step to complete Knowledge Graph (KG) by extracting entity relations from texts.However, it usually suffers from the long-tail issue. The training data mainly concentrates on a few types of relations, leading to the lackof sufficient annotations for the remaining types of relations. In this paper, we propose a general approach to learn relation prototypesfrom unlabeled texts, to facilitate the long-tail relation extraction by transferring knowledge from the relation types with sufficient trainingdata. We learn relation prototypes as an implicit factor between entities, which reflects the meanings of relations as well as theirproximities for transfer learning. Specifically, we construct a co-occurrence graph from texts, and capture both first-order andsecond-order entity proximities for embedding learning. Based on this, we further optimize the distance from entity pairs tocorresponding prototypes, which can be easily adapted to almost arbitrary RE frameworks. Thus, the learning of infrequent or evenunseen relation types will benefit from semantically proximate relations through pairs of entities and large-scale textual information.We have conducted extensive experiments on two publicly available datasets: New York Times and Google Distant Supervision.Compared with eight state-of-the-art baselines, our proposed model achieves significant improvements (4.1% F1 on average). Furtherresults on long-tail relations demonstrate the effectiveness of the learned relation prototypes. We further conduct an ablation study toinvestigate the impacts of varying components, and apply it to four basic relation extraction models to verify the generalization ability.Finally, we analyze several example cases to give intuitive impressions as qualitative analysis. Our codes will be released later.