论文标题
Minmax遗憾的是具有参数权重的动态流道网络上的1链接位置问题
Minmax Regret 1-Sink Location Problems on Dynamic Flow Path Networks with Parametric Weights
论文作者
论文摘要
本文解决了带有参数权重的动态流路径网络上的Minmax后悔的1-链接位置问题。我们为我们提供了一个动态流网络,该流动网络由一个无向路径组成,具有正边长度,正边能力和非负顶点权重。可以将路径视为道路,边缘长度作为沿路的距离,而顶点的重量为现场人数。边缘容量限制了每单位时间可以进入边缘的人数。我们考虑在网络中找到一个水槽的问题,所有人都会尽快从顶点撤离。在我们的模型中,每个权重以公共参数$ t $中的线性函数表示,而确定水槽位置的决策者不知道$ t $的值。我们在Minmax后悔问题等不确定性下提出了水槽位置问题。给定$ t $和一个水槽位置$ x $,$ x $ $ t $的费用是$ x $的到达时间的总和,所有由$ t $确定的人。 $ x $ $ t $的遗憾是$ x $以下$ t $的成本与$ t $以下的最佳成本之间的差距。该问题的任务被制定为找到一个水槽位置的任务,以最大程度地减少所有$ t $的最大遗憾。对于这个问题,我们提出了一个$ o(n^4 2^{α(n)}α(n)\ log n)$ time算法,其中$ n $是网络中的Vertices数量,而$α(\ cdot)$是逆Ackermann函数。同样,对于每个边缘具有相同容量的特殊情况,我们表明复杂性可以降低为$ O(n^3 2^{α(n)}α(n)\ log n)$。
This paper addresses the minmax regret 1-sink location problem on dynamic flow path networks with parametric weights. We are given a dynamic flow network consisting of an undirected path with positive edge lengths, positive edge capacities, and nonnegative vertex weights. A path can be considered as a road, an edge length as the distance along the road and a vertex weight as the number of people at the site. An edge capacity limits the number of people that can enter the edge per unit time. We consider the problem of locating a sink in the network, to which all the people evacuate from the vertices as quickly as possible. In our model, each weight is represented by a linear function in a common parameter $t$, and the decision maker who determines the location of a sink does not know the value of $t$. We formulate the sink location problem under such uncertainty as the minmax regret problem. Given $t$ and a sink location $x$, the cost of $x$ under $t$ is the sum of arrival times at $x$ for all the people determined by $t$. The regret for $x$ under $t$ is the gap between the cost of $x$ under $t$ and the optimal cost under $t$. The task of the problem is formulated as the one to find a sink location that minimizes the maximum regret over all $t$. For the problem, we propose an $O(n^4 2^{α(n)} α(n) \log n)$ time algorithm where $n$ is the number of vertices in the network and $α(\cdot)$ is the inverse Ackermann function. Also for the special case in which every edge has the same capacity, we show that the complexity can be reduced to $O(n^3 2^{α(n)} α(n) \log n)$.