论文标题

SOCCERNET-V2:一个数据集和基准,用于整体了解广播足球视频

SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of Broadcast Soccer Videos

论文作者

Deliège, Adrien, Cioppa, Anthony, Giancola, Silvio, Seikavandi, Meisam J., Dueholm, Jacob V., Nasrollahi, Kamal, Ghanem, Bernard, Moeslund, Thomas B., Van Droogenbroeck, Marc

论文摘要

了解广播视频是计算机视觉中的一项具有挑战性的任务,因为它需要通用的推理功能来欣赏视频编辑所提供的内容。在这项工作中,我们提出了Soccernet-V2,这是Soccernet视频数据集的一种新颖的大规模手动注释语料库,以及鼓励对足球理解和广播生产进行更多研究的公开挑战。具体来说,我们在Soccernet的500张未经修剪的广播足球视频中发布了大约30万个注释。我们将当前的任务扩展到足球领域,以包括动作斑点,通过边界检测进行摄像机拍摄细分,并定义了一个新颖的重播接地任务。对于每个任务,我们提供和讨论基准结果,并通过我们对该领域最相关的作品的开源适应性实现来重现。 SOCCERCERNET-V2已提交给更广泛的研究社区,以帮助将计算机视觉推向更接近自动解决方案,以进行更一般的视频理解和生产目的。

Understanding broadcast videos is a challenging task in computer vision, as it requires generic reasoning capabilities to appreciate the content offered by the video editing. In this work, we propose SoccerNet-v2, a novel large-scale corpus of manual annotations for the SoccerNet video dataset, along with open challenges to encourage more research in soccer understanding and broadcast production. Specifically, we release around 300k annotations within SoccerNet's 500 untrimmed broadcast soccer videos. We extend current tasks in the realm of soccer to include action spotting, camera shot segmentation with boundary detection, and we define a novel replay grounding task. For each task, we provide and discuss benchmark results, reproducible with our open-source adapted implementations of the most relevant works in the field. SoccerNet-v2 is presented to the broader research community to help push computer vision closer to automatic solutions for more general video understanding and production purposes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源