论文标题

射电星系的数据有效分类

Data-Efficient Classification of Radio Galaxies

论文作者

Samudre, Ashwin, George, Lijo, Bansal, Mahak, Wadadekar, Yogesh

论文摘要

射电星系的连续发射通常可以分为不同的形态学类别,例如周五,周五,弯曲或紧凑。在本文中,我们使用深度学习方法探讨了基于形态的宽度星系分类的任务,重点是使用小型数据集($ \ sim 2000 $样本)。我们使用具有先进技术的预训练的Densenet模型(如周期性学习率和判别性学习)来快速训练该模型的先进技术,应用了基于双网络的少量学习技术和转移学习技术。我们使用最佳性能模型达到了超过92 \%的分类精度,而最大的混乱来源是弯曲和FRII类型的星系之间。我们的结果表明,专注于一个小但经过精心策划的数据集以及使用最佳实践来训练神经网络可以带来良好的结果。自动分类技术对于下一代射电望远镜即将进行的调查至关重要,这些望远镜有望在不久的将来检测数十万个新的射电星系。

The continuum emission from radio galaxies can be generally classified into different morphological classes such as FRI, FRII, Bent, or Compact. In this paper, we explore the task of radio galaxy classification based on morphology using deep learning methods with a focus on using a small scale dataset ($\sim 2000$ samples). We apply few-shot learning techniques based on Twin Networks and transfer learning techniques using a pre-trained DenseNet model with advanced techniques like cyclical learning rate and discriminative learning to train the model rapidly. We achieve a classification accuracy of over 92\% using our best performing model with the biggest source of confusion being between Bent and FRII type galaxies. Our results show that focusing on a small but curated dataset along with the use of best practices to train the neural network can lead to good results. Automated classification techniques will be crucial for upcoming surveys with next generation radio telescopes which are expected to detect hundreds of thousands of new radio galaxies in the near future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源