论文标题
预测性碰撞管理时间和依赖风险的路径计划
Predictive Collision Management for Time and Risk Dependent Path Planning
论文作者
论文摘要
自动驾驶汽车或包裹机器人之类的自主代理需要识别并避免可能与障碍物发生冲突,以便在环境中成功移动。但是,人类已经学会了以直觉的方式预测运动,并以前瞻性的方式避免障碍。避免碰撞的任务可以分为全球和本地级别。关于全球水平,我们提出了一种称为“预测碰撞管理路径计划”(PCMP)的方法。在地方一级,使用避免碰撞的解决方案,以防止不可避免的碰撞。因此,PCMP的目的是避免使用预测碰撞管理的不必要的本地碰撞方案。 PCMP是一种基于图的算法,重点是由三个部分组成的时间维度:(1)运动预测,(2)将运动预测集成到时间依赖的图中,以及(3)时间和风险依赖性路径计划。该算法将寻找最短路径的搜索与一个问题结合在一起:弯路是否值得避免可能的碰撞方案?我们在不同的模拟场景中评估了逃避行为,结果表明,对风险敏感的药物可以避免47.3%的碰撞场景,同时绕道绕道。避开风险的代理避免了97.3%的碰撞方案,绕道而行为39.1%。因此,使用PCMP可以主动控制和风险依赖剂的逃避行为。
Autonomous agents such as self-driving cars or parcel robots need to recognize and avoid possible collisions with obstacles in order to move successfully in their environment. Humans, however, have learned to predict movements intuitively and to avoid obstacles in a forward-looking way. The task of collision avoidance can be divided into a global and a local level. Regarding the global level, we propose an approach called "Predictive Collision Management Path Planning" (PCMP). At the local level, solutions for collision avoidance are used that prevent an inevitable collision. Therefore, the aim of PCMP is to avoid unnecessary local collision scenarios using predictive collision management. PCMP is a graph-based algorithm with a focus on the time dimension consisting of three parts: (1) movement prediction, (2) integration of movement prediction into a time-dependent graph, and (3) time and risk-dependent path planning. The algorithm combines the search for a shortest path with the question: is the detour worth avoiding a possible collision scenario? We evaluate the evasion behavior in different simulation scenarios and the results show that a risk-sensitive agent can avoid 47.3% of the collision scenarios while making a detour of 1.3%. A risk-averse agent avoids up to 97.3% of the collision scenarios with a detour of 39.1%. Thus, an agent's evasive behavior can be controlled actively and risk-dependent using PCMP.