论文标题

在非零背景上修改的Camassa-Holm方程:Cauchy问题的大型渐近学

The modified Camassa-Holm equation on a nonzero background: large-time asymptotics for the Cauchy problem

论文作者

de Monvel, Anne Boutet, Karpenko, Iryna, Shepelsky, Dmitry

论文摘要

本文讨论了修改后的Camassa-Holm(MCH)方程\ BEGIN {ALIGNAT*} {4}&M_T+\ left(((U^2-u_x^2)m \ right)_x = 0,&\ quad&m:= 0, u-u_ {xx},&\ quad&t> 0,&\;&\ infty <x <x <x <x <+\ infty,\\&u(x,0)= u_0(x),x <x),&& && && && && && && uspry <x <x <x <x <x <+\ f in of the the Intiral {alignaT*}在case of Intiral ply $ __的$ _0($ us)$ _0(x)假定将非零常数作为$ x \ to \ pm \ infty $。在最近的一篇论文中,我们为这个问题开发了Riemann-Hilbert形式主义,这使我们能够用相关的Riemann-Hilbert分解问题来表示Cauchy问题的解决方案。在本文中,我们基于这种riemann-hilbert形式主义应用了非线性最陡的下降方法,以研究该库奇问题解决方案的大型渐进性。我们介绍了两个部门的无孤子情况下的渐近分析结果,$ \ frac {3} {4} <\ frac {x} {x} {t} {t} <1 $和$ 1 <\ frac {x} {x} {x} {t} {t} {t} {是不平凡的:该术语由调制(根据$ \ frac {x} {t} $)给出(参数),衰减(AS $ t^{ - 1/2} $)三角振荡。

This paper deals with the Cauchy problem for the modified Camassa-Holm (mCH) equation \begin{alignat*}{4} &m_t+\left((u^2-u_x^2)m\right)_x=0,&\quad&m:= u-u_{xx},&\quad&t>0,&\;&-\infty<x<+\infty,\\ &u(x,0)=u_0(x),&&&&&&-\infty<x<+\infty, \end{alignat*} in the case when the initial data $u_0(x)$ as well as the solution $u(x,t)$ are assumed to approach a nonzero constant as $x\to\pm\infty$. In a recent paper we developed the Riemann--Hilbert formalism for this problem, which allowed us to represent the solution of the Cauchy problem in terms of the solution of an associated Riemann--Hilbert factorization problem. In this paper, we apply the nonlinear steepest descent method, based on this Riemann--Hilbert formalism, to study the large-time asymptotics of the solution of this Cauchy problem. We present the results of the asymptotic analysis in the solitonless case for the two sectors $\frac{3}{4}<\frac{x}{t}<1$ and $1<\frac{x}{t}<3$ (in the $(x,t)$ half-plane, $t>0$), where the leading asymptotic term of the deviation of the solution from the background is nontrivial: this term is given by modulated (with parameters depending on $\frac{x}{t}$), decaying (as $t^{-1/2}$) trigonometric oscillations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源