论文标题

使用可开关的Cyclean和Adain连续转换CT内核

Continuous Conversion of CT Kernel using Switchable CycleGAN with AdaIN

论文作者

Yang, Serin, Kim, Eung Yeop, Ye, Jong Chul

论文摘要

X射线计算机断层扫描(CT)使用不同的过滤器内核来突出不同的结构。由于经过重建后通常会删除原始的正式数据,因此,如果需要其他类型的核图像以前未产生的核图像,则可能需要再次扫描患者。因此,在不牺牲图像质量的情况下,对事后图像域的转换的需求不断增加。在本文中,我们使用自适应实例归一化(ADAIN)提出了一种新型的无监督连续内核转换方法。即使没有配对的训练数据,我们的网络不仅可以在两个不同的内核之间转换图像,而且还可以沿两个内核域之间的插值路径转换图像。我们还表明,如果有中间内核域图像可用,则可以进一步提高生成的图像的质量。实验结果证实,我们的方法不仅可以实现与监督学习方法相当的准确的内核转换,而且还可以在看不见的域中产生中间核图像,这些图像可用于咽癌诊断。

X-ray computed tomography (CT) uses different filter kernels to highlight different structures. Since the raw sinogram data is usually removed after the reconstruction, in case there are additional need for other types of kernel images that were not previously generated, the patient may need to be scanned again. Accordingly, there exists increasing demand for post-hoc image domain conversion from one kernel to another without sacrificing the image quality. In this paper, we propose a novel unsupervised continuous kernel conversion method using cycle-consistent generative adversarial network (cycleGAN) with adaptive instance normalization (AdaIN). Even without paired training data, not only can our network translate the images between two different kernels, but it can also convert images along the interpolation path between the two kernel domains. We also show that the quality of generated images can be further improved if intermediate kernel domain images are available. Experimental results confirm that our method not only enables accurate kernel conversion that is comparable to supervised learning methods, but also generates intermediate kernel images in the unseen domain that are useful for hypopharyngeal cancer diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源