论文标题
使用Epolar时空时空网络的多视图深度估计
Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks
论文作者
论文摘要
我们提出了一种从单个视频中进行多视图深度估计的新方法,这是各种应用程序(例如感知,重建和机器人导航)的关键任务。尽管以前的基于学习的方法已经证明了令人信服的结果,但大多数作品估计了单个视频帧的深度图,而无需考虑框架之间强烈的几何和时间连贯性。此外,当前的最新模型(SOTA)模型主要采用完全的3D卷积网络进行成本正则化,因此需要高计算成本,从而限制了它们在实际应用程序中的部署。我们的方法通过使用新型的Epolar Pastio-tomporal(EST)变压器与多个估计的深度图明确将几何相关性和时间相关性明确关联,从而实现了时间相干的深度估计。此外,为了降低由最近的专家模型混合模型启发的计算成本,我们设计了一个紧凑的混合网络,该网络由2D上下文感知网络和一个3D匹配网络组成,该网络分别学习2D上下文信息和3D差异线索。广泛的实验表明,与SOTA方法相比,我们的方法在深度估计方面的准确性和显着的速度具有更高的准确性。
We present a novel method for multi-view depth estimation from a single video, which is a critical task in various applications, such as perception, reconstruction and robot navigation. Although previous learning-based methods have demonstrated compelling results, most works estimate depth maps of individual video frames independently, without taking into consideration the strong geometric and temporal coherence among the frames. Moreover, current state-of-the-art (SOTA) models mostly adopt a fully 3D convolution network for cost regularization and therefore require high computational cost, thus limiting their deployment in real-world applications. Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer to explicitly associate geometric and temporal correlation with multiple estimated depth maps. Furthermore, to reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network consisting of a 2D context-aware network and a 3D matching network which learn 2D context information and 3D disparity cues separately. Extensive experiments demonstrate that our method achieves higher accuracy in depth estimation and significant speedup than the SOTA methods.