论文标题
具有弹性的极限事件的文本分析侦察
Text Analytics for Resilience-Enabled Extreme Events Reconnaissance
论文作者
论文摘要
危害后对自然灾害的侦察(例如,地震)对于理解建筑环境的性能,加快恢复,增强弹性并做出与当前和未来危害有关的明智决定。本研究中使用了自然语言处理(NLP),目的是通过自动化提高自然危害侦察的准确性和效率。该研究特别关注(1)由太平洋地震工程研究(PEER)中心服务器托管的自动数据(新闻和社交媒体)集合,(2)自动生成侦察报告,以及(3)使用社交媒体来提取诸如恢复时间之类的抢劫后信息。获得的结果令人鼓舞,以进一步开发和更广泛的NLP方法在自然危害侦察中。
Post-hazard reconnaissance for natural disasters (e.g., earthquakes) is important for understanding the performance of the built environment, speeding up the recovery, enhancing resilience and making informed decisions related to current and future hazards. Natural language processing (NLP) is used in this study for the purposes of increasing the accuracy and efficiency of natural hazard reconnaissance through automation. The study particularly focuses on (1) automated data (news and social media) collection hosted by the Pacific Earthquake Engineering Research (PEER) Center server, (2) automatic generation of reconnaissance reports, and (3) use of social media to extract post-hazard information such as the recovery time. Obtained results are encouraging for further development and wider usage of various NLP methods in natural hazard reconnaissance.