论文标题

从随机对照试验中概括治疗效果时,未观察到的效应修饰符的敏感性分析:假设,模型,效果量表,数据情景和实施细节

Sensitivity analyses for effect modifiers not observed in the target population when generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and implementation details

论文作者

Nguyen, Trang Quynh, Ackerman, Benjamin, Schmid, Ian, Cole, Stephen R., Stuart, Elizabeth A.

论文摘要

背景:随机对照试验通常用于为广泛人群提供政策和实践。但是,如果有效应修饰符在目标群体中的分布与试验中的分布不同于试验的平均治疗效果(ATE),则可能与试验中观察到的ATE不同。如果在试验和目标人群中观察到治疗效果修饰符的分布,则存在使用试验数据来估计目标群体所食的方法 - 这是实践中可能无法实现的假设。 方法:提出的灵敏度分析解决了在试验中观察到的治疗效应修饰符但未识别目标群体的情况。这些方法基于结果模型或这种模型的组合以及对试验样本和目标人群之间观察到的差异的加权调整。它们适用于几种类型的结果模型:用于添加效应的线性模型(包括单个时间结果和治疗后和处理后结果),以及具有log或logit链接的模型以获得乘法效应。我们阐明了方法的假设并提供详细的实现指令。 插图:我们使用一个示例说明了从随机试验到相关目标人群的hiv治疗方案的效果的示例。 结论:这些方法使研究人员和决策者在得出有关目标人群影响的结论时就可以更加适当的信心。

Background: Randomized controlled trials are often used to inform policy and practice for broad populations. The average treatment effect (ATE) for a target population, however, may be different from the ATE observed in a trial if there are effect modifiers whose distribution in the target population is different that from that in the trial. Methods exist to use trial data to estimate the target population ATE, provided the distributions of treatment effect modifiers are observed in both the trial and target population -- an assumption that may not hold in practice. Methods: The proposed sensitivity analyses address the situation where a treatment effect modifier is observed in the trial but not the target population. These methods are based on an outcome model or the combination of such a model and weighting adjustment for observed differences between the trial sample and target population. They accommodate several types of outcome models: linear models (including single time outcome and pre- and post-treatment outcomes) for additive effects, and models with log or logit link for multiplicative effects. We clarify the methods' assumptions and provide detailed implementation instructions. Illustration: We illustrate the methods using an example generalizing the effects of an HIV treatment regimen from a randomized trial to a relevant target population. Conclusion: These methods allow researchers and decision-makers to have more appropriate confidence when drawing conclusions about target population effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源