论文标题

广义单索引模型和詹森对繁殖和生存的影响

Generalized Single Index Models and Jensen Effects on Reproduction and Survival

论文作者

Ye, Zi, Hooker, Giles, Ellner, Stephen P.

论文摘要

环境变异性通常通过对个人表现的影响对自然人群和社区产生重大影响。由于生物对环境条件的反应通常是非线性的(例如,最佳温度两侧的性能降低),因此平均响应通常与平均环境中的响应不同。是的al。 2020年,提出了通过估计“ Jensen效应”,在各种环境与固定环境中的平均生长速率差异,在功能性单个指数模型中,提出了对个人或人口增长率存在这种差异影响的测试。在本文中,我们将此分析扩展到环境差异对繁殖和生存的影响,这些繁殖和生存具有计数和二元结果。在用于分析此类数据的标准通用线性模型中,詹森效应的方向被模型的链接函数默认假定为先验。在这里,我们扩展了Ye et的方法。 al。 2020使用广义单索引模型测试该假设方向是否与数据相矛盾。我们表明,我们的测试在温和的替代方案下具有合理的功率,但是需要比通常可用的样本量大。我们在爱达荷州草原上的长期植物地面覆盖物上演示了我们的方法。

Environmental variability often has substantial impacts on natural populations and communities through its effects on the performance of individuals. Because organisms' responses to environmental conditions are often nonlinear (e.g., decreasing performance on both sides of an optimal temperature), the mean response is often different from the response in the mean environment. Ye et. al. 2020, proposed testing for the presence of such variance effects on individual or population growth rates by estimating the "Jensen Effect", the difference in average growth rates under varying versus fixed environments, in functional single index models for environmental effects on growth. In this paper, we extend this analysis to effect of environmental variance on reproduction and survival, which have count and binary outcomes. In the standard generalized linear models used to analyze such data the direction of the Jensen Effect is tacitly assumed a priori by the model's link function. Here we extend the methods of Ye et. al. 2020 using a generalized single index model to test whether this assumed direction is contradicted by the data. We show that our test has reasonable power under mild alternatives, but requires sample sizes that are larger than are often available. We demonstrate our methods on a long-term time series of plant ground cover on the Idaho steppe.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源