论文标题
Wiedemann-Franz法律和$ sl(2,\ Mathbb {z})$ duality in Ads/cmt全息二元组和一维有效动作
Wiedemann-Franz laws and $Sl(2,\mathbb{Z})$ duality in AdS/CMT holographic duals and one-dimensional effective actions for them
论文作者
论文摘要
在本文中,我们研究了Wiedemann-Franz在2+1个维度中的运输法,以及$ SL(2,\ Mathbb {Z})$在此运输中的作用,用于ADS/CMT DUAL的理论。我们发现$ sl(2,\ mathbb {z})$限制了类似RG的电导率流,并且Wiedemann-Franz Law是$ \ bar l = \barκ/(tσ)= cg_4^2π/3 $,从虚弱的coupled} restity} restity dual中。在自偶联理论中,该值也是弱耦合场理论描述中$ l =κ/(tσ)$的值。我们使用通用$ SYK_Q $型号和$ ADS_4 $ GREATITY DUAL的0+1维有效动作的形式主义,我们计算运输系数,并显示如何以大$ Q $进行匹配。我们构建了这种有效动作的概括,该动作是在$ sl(2,\ mathbb {z})$下不变的,并且可以描述Vortex的传导和整数量子Hall效应。
In this paper we study the Wiedemann-Franz laws for transport in 2+1 dimensions, and the action of $Sl(2,\mathbb{Z})$ on this transport, for theories with an AdS/CMT dual. We find that $Sl(2,\mathbb{Z})$ restricts the RG-like flow of conductivities and that the Wiedemann-Franz law is $\bar L =\barκ/(Tσ)=cg_4^2π/3$, from the weakly coupled} gravity dual. In a self-dual theory this value is also the value of $L =κ/(Tσ)$ in the weakly coupled field theory description. Using the formalism of a 0+1 dimensional effective action for both generalized $SYK_q$ models and the $AdS_4$ gravity dual, we calculate the transport coefficients and show how they can be matched at large $q$. We construct a generalization of this effective action that is invariant under $Sl(2,\mathbb{Z})$ and can describe vortex conduction and integer quantum Hall effect.