论文标题

随机对照试验中的非结构化主要结果

Unstructured Primary Outcome in Randomized Controlled Trials

论文作者

Taylor-Rodriguez, Daniel, Lovitz, David, Mattek, Nora, Wu, Chao-Yi, Dodge, Hiroko, Kaye, Jeffrey, Jedynak, Bruno M.

论文摘要

随机临床试验(RCT)的主要结果通常是二分法,连续,多元连续或事件时间。但是,如果这种结果是非结构化的,例如,混合类型,纵向序列,图像,音频记录等变量的列表。当结果是非结构化的时,尚不清楚如何评估RCT成功以及如何计算样本量。我们表明,内核方法为传统生物统计学方法提供了自然扩展。我们通过在老龄化参与者中的计算机使用测量来证明我们的方法,其中一些人将受到认知障碍。模拟以及真实的数据实验表明,与这种情况下的标准相比,所提出的方法的优越性:广义混合效应模型。

The primary outcome of Randomized clinical Trials (RCTs) are typically dichotomous, continuous, multivariate continuous, or time-to-event. However, what if this outcome is unstructured, e.g., a list of variables of mixed types, longitudinal sequences, images, audio recordings, etc. When the outcome is unstructured it is unclear how to assess RCT success and how to compute sample size. We show that kernel methods offer natural extensions to traditional biostatistics methods. We demonstrate our approach with the measurements of computer usage in a cohort of aging participants, some of which will become cognitively impaired. Simulations as well as a real data experiment show the superiority of the proposed approach compared to the standard in this situation: generalized mixed effect models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源