论文标题
$ \ mathrm {gsp} _4 \ times \ mathrm {gl} _2 $
Euler Systems for $\mathrm{GSp}_4 \times \mathrm{GL}_2$
论文作者
论文摘要
对于$ \ mathrm {gsp} _4 \ times \ times \ mathrm {gl} _2 $的非副镜下cuspidal cuspidal自生物表示,假定为$ p $ - 非凡,我们为与之相关的Galois表示构建了Euler System。 tame norm关系的构建和验证均基于Novodvorsky的整体公式,用于$ \ mathrm {gsp} _4 \ times \ times \ mathrm {gl} _2 $ $ \ mathrm {gsp} _4 \ times \ times \ times \ times _2 $。
For a non-endoscopic cohomological cuspidal automorphic representation of $\mathrm{GSp}_4 \times \mathrm{GL}_2$, assumed to be $p$-ordinary, we construct an Euler system for the Galois representation associated to it. Both the construction and the verification of tame norm relations are based on Novodvorsky's integral formula for the $L$-function of $\mathrm{GSp}_4 \times \mathrm{GL}_2$.