论文标题

在模拟的Regolith上的渗透实验中的棒滑动动力学

Stick-slip dynamics in penetration experiments on simulated regolith

论文作者

Featherstone, Jack, Bullard, Robert, Emm, Tristan, Jackson, Anna, Reid, Riley, Shefferman, Sean, Dove, Adrienne, Colwell, Joshua, Kollmer, Jonathan E., Daniels, Karen E.

论文摘要

许多行星体的表面,包括小行星和小卫星,都被灰尘覆盖在卵石大小的岩石上,被重力和接触力弱地固定在表面上。了解Regolith对外部扰动的反应将允许在此表面上使用的仪器,包括传感器和锚定机制,以实施优化的设计原理。我们分析了插入松散的岩石模拟剂的柔性探针的行为,这是探针速度和环境重力加速度的函数,以探索相关的动力学。 Empanada实验(需要锚定或挖掘在小行星上的应用程序的射流最少协议)飞行了几次抛物线飞行。它采用经典的颗粒物理技术,即光弹性,以量化柔性探针在插入双分散型,CM大小的模型晶粒系统中的动力学。在探针插入过程中,我们以多种速度和四个不同水平的重力(陆地,火星,月球和微重力)确定了整个系统中的力链结构。我们确定离散的,滑动失败的事件,这些事件随着引力加速度的函数而增加的频率增加。在微重力环境中,棒状滑移行为可以忽略不计,我们发现更快的探针插入可以抑制存在的粘发行为。我们得出的结论是,岩石对碎石小行星的机械响应可能与在较大的行星物体上发现的机械响应可能完全不同,并且将陆地实验缩放到微重力条件上可能无法捕获完整的物理动力学。

The surfaces of many planetary bodies, including asteroids and small moons, are covered with dust to pebble-sized regolith held weakly to the surface by gravity and contact forces. Understanding the reaction of regolith to an external perturbation will allow for instruments, including sensors and anchoring mechanisms for use on such surfaces, to implement optimized design principles. We analyze the behavior of a flexible probe inserted into loose regolith simulant as a function of probe speed and ambient gravitational acceleration to explore the relevant dynamics. The EMPANADA experiment (Ejecta-Minimizing Protocols for Applications Needing Anchoring or Digging on Asteroids) flew on several parabolic flights. It employs a classic granular physics technique, photoelasticity, to quantify the dynamics of a flexible probe during its insertion into a system of bi-disperse, cm-sized model grains. We identify the force-chain structure throughout the system during probe insertion at a variety of speeds and for four different levels of gravity: terrestrial, martian, lunar, and microgravity. We identify discrete, stick-slip failure events that increase in frequency as a function of the gravitational acceleration. In microgravity environments, stick-slip behaviors are negligible, and we find that faster probe insertion can suppress stick-slip behaviors where they are present. We conclude that the mechanical response of regolith on rubble pile asteroids is likely quite distinct from that found on larger planetary objects, and scaling terrestrial experiments to microgravity conditions may not capture the full physical dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源