论文标题
整个大脑细胞结构映射的对比表示学习人类脑部的映射
Contrastive Representation Learning for Whole Brain Cytoarchitectonic Mapping in Histological Human Brain Sections
论文作者
论文摘要
细胞结构图提供了大脑的显微结构参考分析,从组织学组织切片测量的神经元细胞体的空间排列来描述其组织。最近的工作提供了使用卷积神经网络对视觉系统中细胞结构区域的首次自动分割。我们旨在扩展这种方法,以适用于更广泛的大脑区域,并设想一种用于映射完整人脑的解决方案。受图像分类的最新成功的启发,我们提出了一个对比度学习目标,用于将微观图像贴片编码为鲁棒的微观结构特征,这对于细胞结构区域分类有效。我们表明,使用此学习任务进行预训练的模型优于从头开始训练的模型,以及在最近提出的辅助任务上预先训练的模型。我们在特征空间中执行聚类分析,以表明学习的表示形成解剖学上有意义的群体。
Cytoarchitectonic maps provide microstructural reference parcellations of the brain, describing its organization in terms of the spatial arrangement of neuronal cell bodies as measured from histological tissue sections. Recent work provided the first automatic segmentations of cytoarchitectonic areas in the visual system using Convolutional Neural Networks. We aim to extend this approach to become applicable to a wider range of brain areas, envisioning a solution for mapping the complete human brain. Inspired by recent success in image classification, we propose a contrastive learning objective for encoding microscopic image patches into robust microstructural features, which are efficient for cytoarchitectonic area classification. We show that a model pre-trained using this learning task outperforms a model trained from scratch, as well as a model pre-trained on a recently proposed auxiliary task. We perform cluster analysis in the feature space to show that the learned representations form anatomically meaningful groups.