论文标题
K + M构造具有一般覆盖和与多项式复合材料的关系
K + M constructions with general overrings and relationships with polynomial composites
论文作者
论文摘要
在本文中,我们考虑了k + m的构造,其中k是域,m是一些多项式环的最大理想,其系数来自田间L,其中k是k的子。除了通常的领域,我们还考虑了Noetherian,Prufer和GCD域。特别是,多项式复合材料是K + M结构的情况。在本文中,我们将发现许多与多项式复合材料有关的施工结论。
In this paper we consider the construction of K + M, where K is the domain, M is the maximal ideal of a some ring of polynomials with coefficients from the field L, where K is its subring. In addition to the usual domains, we also consider the Noetherian, Prufer and GCD-domains. In particular, polynomial composites are a case of K + M construction. In this paper we will find numerous construction conclusions related to polynomial composites.