论文标题

多层毛弹性与Stokes流相互作用

Multilayered Poroelasticity Interacting with Stokes Flow

论文作者

Bociu, Lorena, Čanić, Sunčica, Muha, Boris, Webster, Justin T.

论文摘要

我们考虑由动态stokes方程建模的不可压缩的粘性流体与多层毛弹性结构建模之间的相互作用,该结构由薄的,线性的,孔隙弹性板层(与自由Stokes Flow直接接触)和厚的生物层。通过物理耦合条件(包括海狸 - 约瑟夫 - 塞夫曼条件),多层毛弹性结构的流体流量和弹性动力学完全偶联,这表现出与相关速度痕迹的规则性相关的数学挑战。我们证明了(i)线性,动态生物模型或(ii)非线性准静态生物分量的(i)的流体结构相互作用问题的弱解决方案,其中渗透性是流体含量的非线性函数(由生物学应用动机)。证明是基于通过Rothe的方法构建近似解决方案的,并使用能量方法和Aubin-Lions紧凑型引理(在非线性情况下)的版本来恢复弱解作为近似子序列的极限。我们还提供了唯一性标准,并表明如果人们假定额外的规律性,构造的弱解决方案确实是耦合问题的强大解决方案。

We consider the interaction between an incompressible, viscous fluid modeled by the dynamic Stokes equation and a multilayered poroelastic structure which consists of a thin, linear, poroelastic plate layer (in direct contact with the free Stokes flow) and a thick Biot layer. The fluid flow and the elastodynamics of the multilayered poroelastic structure are fully coupled across a fixed interface through physical coupling conditions (including the Beavers-Joseph-Saffman condition), which present mathematical challenges related to the regularity of associated velocity traces. We prove existence of weak solutions to this fluid-structure interaction problem with either (i) a linear, dynamic Biot model, or (ii) a nonlinear quasi-static Biot component, where the permeability is a nonlinear function of the fluid content (as motivated by biological applications). The proof is based on constructing approximate solutions through Rothe's method, and using energy methods and a version of Aubin-Lions compactness lemma (in the nonlinear case) to recover the weak solution as the limit of approximate subsequences. We also provide uniqueness criteria and show that constructed weak solutions are indeed strong solutions to the coupled problem if one assumes additional regularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源